طراحی مدل پویای هوشمند نگهد‌ا‌ری و تعمیر‌ات پیش‌گیرانه در صنعت نساجی و پوشاک در تعامل با تولید با بهره برداری از شبکه عصبی مصنوعی -فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هییت علمی دانشگاه آزاد اسلامی واخد تهران جنوب

2 دانشگاه آزاد اسلامی واحد علوم تحقیقات

3 دانشیار مهندسی صنایع علوم تحقیقات

4 گروه مهندسی صنایع دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران، ایران

چکیده

از مواردی که امروزه برای صنایع باعث ایجاد مشکل به خصوص در زمینه فروش ، هزینه هایی تعمیرات خرابی تجهیزات و به تبع آن از کارافتادگی دانست.این موضوع لزوم تخقیق بر روی یک استراتژی حامع را برای برفع ضروری ساخته و از آنجا که استرتژی برای هر سازمان مختص به آن سازمان لذا توسط مدیران و مخققین خود آن مجموعه صورت پذیرد. انجام پژوهش"طراحی مدل پویای هوشمند نگهد‌ا‌ری و تعمیر‌ات پیش‌گیرانه با بهره‌برداری ازمتدلوژی سیستم عصبی مصنوعی - منطق فازی و در تعامل با تولید" مستندات صنایع نساجی و پوشاک و نساجی بروجرد که محل اجرای طرح و بر اساس یک نمونه 2000 تایی ار آنها شبیه سازی به کمک ونسیم و سپس استفاده از محیط هوش مصنوعی نرم افزار متلب می‌توان ادعا نمود. که اگر (If)؛ وضعیت "عامل فن‌‌آوری در نت" خوب باشد یعنی دقیقاً 0.9129؛ و وضعیت "عامل کارکنان در نت" خوب (کران بالای تابع عضویت خوب) باشد یعنی دقیقاً 0.9239؛ و وضعیت "عامل محیط کار در نت" نسبتاً خوب خوبباشد یعنی دقیقاً 0.8859؛ و وضعیت "عامل کیفیت در نت" کاملاً خوب باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing an intelligent dynamic model of preventive maintenance and repairs in the textile and clothing industry in interaction with production using fuzzy-artificial neural network.

نویسندگان [English]

  • Mehrdad Javadi 1
  • shahram Fatemi 2
  • Amir Azizi 3
  • Esmaeil Najafi 4
1 South Tehran Branch, Islamic Azad University, Tehran , Iran
2 Islamic Azad University Science and Research Branch
3 Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Department of Industrial Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

One of the issues that cause problems for industries today, especially in the field of sales, is the cost of repairing equipment breakdowns and, as a result, out of service. Specific to that organization, therefore, it should be done by the managers and researchers of that group. Conducting the research "Designing a dynamic intelligent model of preventive maintenance and repairs using the methodology of artificial nervous system - fuzzy logic and in interaction with the production" of the documents of textile and clothing industries in Borujerd, where the project is implemented and on a sample of 2000 of them, the simulation is Vansim's help and then using the artificial intelligence environment of MATLAB software can be claimed. that if (If); situation "Technology factor in Net" should be good, that is 0.9129; and the situation"employees in the net" is good (the upper limit of the membership function is good), that is, 0.9239; And the status of "working environment factor on the net" is relatively good, that is, exactly 0.8859; And the status of should be completel

کلیدواژه‌ها [English]

  • : System dynamics
  • simulation
  • preventive maintenance and repairs
  • artificial neural networks - fuzzy logic
  1. Alsyouf, I. 2009. Maintenance practices in Swedish industries: Survey results. International Journal of Production Economics, 121 (1), 212-223. doi: https://dx.doi.org/10.1016/j.ijpe.2009.05.005

    Arnetz, J. E., Zhdanova, L., & Arnetz, B. B. (2016). Patient involvement: a new source of stress in health care work? Health communication, 31(12), 1566-1572.

    Bangalore, P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.

    Bell, M. A. 2015. Methods for enhancing system dynamics modeling: state-space models, data-driven structural validation & discrete event simulation. (PhD), Lancaster University.

    Brailsford, S., Desai, S. M., & Viana, J. 2010. Towards the holygrail: Combining System dynamics and discrete-event simulation in healthcare. Paper presented at the Proceedings of the Winter Simulation Conference

    Droguett, E. L., Jacinto, C. M. C., Garcia, P. A. A., & Moura, M. 2006. Availability assessment of onshore oil fields. Paper presented at the Proceedings of the European Safety and Reliability Conference 2006, ESREL 2006 – Safety and Reliability for Managing Risk.

    Eti, M.C. & Ogaji, Stephen & Probert, S.D.. (2006). Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability-focused culture. Applied Energy. 83. 1235-1248.

    Garcia, Kyounghyun, Minh Chau Nguyen, and Heesun Won. 2015. "Web-based collaborative big data analytics on big data as a service platform." 17th International Conference on Advanced Communication Technology

    Kauppi, K, Longoni, A. 2016. Managing country disruption risks and improving operational performance: risk management along integrated supply chains, International Journal of Int.J. Production Economics, vol. 182, PP.484-495.

    Kováč, J., Stejskal, T., & Valenčík, Š. (2013). Virtual Reality in the Maintenance of Machinery and Equipment. Applied Mechanics and Materials, 282, 269–273.

    Laks, Paul & Wim J. C. Verhagen. 2018. Identification of optimal preventive maintenance decisions for composite components. Transportation Research Procedia, Volume 29, 2018, Pages 202-212

    Liyanage, J. and Kumar, U. (2003), "Towards a value‐based view on operations and maintenance performance management", Journal of Quality in Maintenance Engineering, Vol. 9 No. 4, pp. 333-350.

    Sgarbossa, Fabio, 2018. Impacts of Weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, Volume 51, Issue 11, 2018, Pages 508-513

    1. K. Yang, "A condition-based failure-prediction and processing-scheme for preventive maintenance," in IEEE Transactions on Reliability, vol. 52, no. 3, pp. 373-383, Sept. 2003.

    Song, Jian, et al. 2018. Dynamic Simulation of the Group Behavior under Fire Accidents Based on System Dynamics. Procedia Engineering, Volume 211, 2018, Pages 635-643

    Trejo, d. and Reinschmidt, k. \Justifying materials selection for reinforced concrete structures: Part I – Sensitivity analysis", Journal of Bridge Engineering, 12(1), pp. 31-37 (2005).

    Wan, Shan & Li, Dongbo & Gao, James & Roy, Rajkumar & He, Fei. (2018). A collaborative machine tool maintenance planning system based on content management technologies. The International Journal of Advanced Manufacturing Technology. 94. 1639-1653. 10.1007/s00170-016-9829-0.

    Woodhouse P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.

    Xue, Chaogai &Yawen Xu. 2017. Influence Factor Analysis of Enterprise IT Innovation Capacity Based on System Dynamics. Procedia Engineering, Volume 174, 2017, Pages 232-239

CAPTCHA Image