-ارائه یک سیستم توصیه گر برای برای صنعت گردشگری سلامت با استفاده از روش های داده کاوی

نوع مقاله : مقاله پژوهشی

نویسنده

کارشناسی ارشد کامپیوتر- نرم افزار، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران. رایانامه: rezamolae4@gmail.com

چکیده

در این تحقیق به ارائه روش جدیدی به منظور بهبود سیستم های توصیه گر در زمینه گردشگری سلامت پرداخته می‌شود که با استفاده از فیلترینگ مشارکتی و با استفاده از امتیازاتی که گردشگران قبلی، به مکان‌ها و متخصصین حوزه سلامت در کشورمان، داده‌اند می‌تواند پیش بینی های دقیقی را جهت استفاده گردشگران ارائه دهد. طبق تحقیقات صورت گرفته خوشه بندی داده ها با استفاده از الگوریتم DBSCAN، امتیاز کارایی 99% را بدست آورد که بالاترین امتیاز کارایی در بین الگوریتم های موجود می‌باشد، همچنین روش SVM در بخش دقت، امتیاز 95% و در بخش فراخوانی، امتیاز 99% را بدست آورد که نشان از دقت بالای پیش‌بینی نتایج را دارد و روش پیشنهادی به صورت کلی تا 80% می تواند مکان های مورد نیاز گردشگر را به درستی تشخیص داده و مکان مناسب را تا حدود زیادی به درستی پیشنهاد دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a recommender system for the health tourism industry using data mining methods

نویسنده [English]

  • reza molaee fard
Master of Computer-Software, Dezful Branch, Islamic Azad University, Dezful, Iran. Email: rezamolae4@gmail.com
چکیده [English]

In this research, a new method is presented to improve the recommendation systems in the field of health tourism, which can make accurate predictions by using participatory filtering and by using the points that previous tourists have given to places and health professionals in our country. For the use of tourists. According to the research, data clustering using DBSCAN algorithm obtained 99% efficiency score, which is the highest efficiency score among the existing algorithms. Also, SVM method has 95% score in accuracy section and 99% score in call section. Which shows the high accuracy of predicting the results and the proposed method in general up to 80% can correctly identify the places needed by the tourist and suggest the appropriate place to a large extent correctly

کلیدواژه‌ها [English]

  • Recommender system
  • health tourism
  • data mining web mining
  • participatory filtering
Arabi, H., Balakrishnan, V., & Shuib, N. L. M. (2020). A Context-Aware Personalized Hybrid Book Recommender System. Journal of Web Engineering, 405-428. DOI: https://doi.org/10.13052/jwe1540-9589.19343
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-based systems, 46, 109-132. DOI: https://doi.org/10.1016/j.knosys.2013.03.012
El Bahi, H., & Zatni, A. (2018). DOCUMENT TEXT DETECTION IN VIDEO FRAMES ACQUIRED BY A SMARTPHONE BASED ON LINE SEGMENT DETECTOR AND DBSCAN CLUSTERING. Journal of Engineering Science and Technology, 13(2), 540-557. DOI: https://doi.org/10.1007/978-3-030-12048-1_7
Gök, A., Waterworth, A., & Shapira, P. (2015). Use of web mining in studying innovation. Scientometrics, 102(1), 653-671 DOI: https://doi.org/10.1007/s11192-014-1434-0
Guha, S., & Mishra, N. (2016). Clustering data streams. In Data stream management (pp. 169-187). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-28608-0_8
Hanefeld, J., Lunt, N., Smith, R., & Horsfall, D. (2015). Why do medical tourists travel to where they do? The role of networks in determining medical travel. Social Science & Medicine, 124, 356-363. DOI: https://doi.org/10.1016/j.socscimed.2014.05.016
Kagita, V. R., Pujari, A. K., & Padmanabhan, V. (2015). Virtual user approach for group recommender systems using precedence relations. Information Sciences, 294, 15-30. DOI: https://doi.org/10.1016/j.ins.2014.08.072
Ładyżyński, P., & Grzegorzewski, P. (2015). Vague preferences in recommender systems. Expert Systems with Applications, 42(24), 9402-9411. DOI: https://doi.org/10.1016/j.eswa.2015.08.006
Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: a survey. Decision Support Systems, 74, 12-32. DOI: https://doi.org/10.1016/j.dss.2015.03.008
Nguyen, T. N., & Ricci, F. (2018). A chat-based group recommender system for tourism. Information Technology & Tourism, 18(1-4), 5-28. DOI: https://doi.org/10.1007/s40558-017-0099-y
Nilashi, M., Bagherifard, K., Rahmani, M., & Rafe, V. (2017). A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques. Computers & industrial engineering, 109, 357-368. DOI: https://doi.org/10.1016/j.cie.2017.05.016
Nkweteyim, D. (2009). Hyperlink Recommender Systems Design: A Research Study on Tools and Techniques. VDM Verlag DOI: https://doi.org/10.1007/978-0-387-85820-3_1
Rahimi, Haji Zeynalabedini ., Applications Of Datamining in science information and Epistemology.Nov 22:2(3):23:-32 2015 DOI: https://doi.org/10.5120/ijca2016909249
Roiger, R. J. (2017). Data mining: a tutorial-based primer. CRC press DOI: https://doi.org/10.1201/9781315382586
Siddharth Agrawal.)2019 (Machine learning-DBSCAN. Toward Data Science. Dor: 20.1001.1.27170411.1402.15.57.6.1
Sinha, A. K., Raj, N., Haque, S., Haque, A., & Singh, N. K. Web Content Mining: Tool, Technique & Concept DOI: https://doi.org/10.9790/0661-1806065760
Sun, Y., & Zhang, Y. (2018, June). Conversational recommender system. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 235-244). DOI: https://doi.org/10.1145/3209978.3210002
Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107. DOI: https://doi.org/10.1109/TKDE.2013.109
Zhang, F., Yuan, N. J., Lian, D., Xie, X., & Ma, W. Y. (2016, August). Collaborative knowledge base embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 353-362) DOI: https://doi.org/10.1145/2939672.2939673
Zhao, Y., & Lin, H. (2014, August). WEB data mining applications in e-commerce. In 2014 9th International Conference on Computer Science & Education (pp. 557-559). IEEE DOI: https://doi.org/10.1109/ICCSE.2014.6926523
Xu, Z., Chen, L., & Chen, G. (2015). Topic based context-aware travel recommendation method exploiting geotagged photos. Neurocomputing, 155, 99-107. DOI: https://doi.org/10.1016/j.neucom.2014.12.043
CAPTCHA Image