Rolls, E. T., & Deco, G. (2006). Attention in natural scenes: neurophysiological and computational
bases. Neural networks, 19(9), 1383-1394.
Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE transactions on pattern
analysis and machine intelligence, 35(1), 185-207.
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene
analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, (11), 1254-1259.
Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. In Advances in neural
information processing systems (pp. 155-162).
Achanta, R., Hemami, S., Estrada, F., & Süsstrunk, S. (2009). Frequency-tuned salient region detection.
In IEEE international conference on computer vision and pattern recognition (CVPR 2009) (No.
CONF, pp. 1597-1604).
Hou, X., & Zhang, L. (2007, June). Saliency detection: A spectral residual approach. In 2007 IEEE
Conference on computer vision and pattern recognition (pp. 1-8). IEEE.
Guo, C., Ma, Q., & Zhang, L. (2008, June). Spatio-temporal saliency detection using phase spectrum of
quaternion fourier transform. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1-8). IEEE.
Jiang, B., Zhang, L., Lu, H., Yang, C., & Yang, M. H. (2013). Saliency detection via absorbing markov
chain. In Proceedings of the IEEE international conference on computer vision (pp. 1665-1672).
Li, A., Li, C., Wang, X., Eberl, S., Feng, D. D., & Fulham, M. (2013, November). Automated
segmentation of prostate MR images using prior knowledge enhanced random walker. In 2013
International Conference on Digital Image Computing: Techniques and Applications (DICTA)
(pp. 1-7). IEEE.
Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012, June). Saliency filters: Contrast based
filtering for salient region detection. In 2012 IEEE conference on computer vision and pattern
recognition (pp. 733-740). IEEE.
Wei, Y., Wen, F., Zhu, W., & Sun, J. (2012, October). Geodesic saliency using background priors. In
European conference on computer vision (pp. 29-42). Springer, Berlin, Heidelberg.
Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M. H. (2013). Saliency detection via graph-based
manifold ranking. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 3166-3173).
Yang, J., & Yang, M. H. (2017). Top-down visual saliency via joint CRF and dictionary learning. IEEE
transactions on pattern analysis and machine intelligence, 39(3), 576-588.
Lu, S., Mahadevan, V., & Vasconcelos, N. (2014). Learning optimal seeds for diffusion-based salient
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 2790-2797).
Lu, S., Mahadevan, V., & Vasconcelos, N. (2014). Learning optimal seeds for diffusion-based salient
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 2790-2797).
Tong, N., Lu, H., Ruan, X., & Yang, M. H. (2015). Salient object detection via bootstrap learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 18841892).
Qiu, W., Gao, X., & Han, B. (2017). A superpixel-based CRF saliency detection approach.
Neurocomputing, 244, 19-32.
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the
spatial envelope. International journal of computer vision, 42(3), 145-175.
Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., & Maybank, S. J. (2017). Salient object detection via
structured matrix decomposition. IEEE transactions on pattern analysis and machine intelligence,
39(4), 818-832.
Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for
segmenting and labeling sequence data.
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A
discriminative regional feature integration approach. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 2083-2090).
Fu, K., Gong, C., Yang, J., Zhou, Y., & Gu, I. Y. H. (2013). Superpixel based color contrast and color
distribution driven salient object detection. Signal Processing: Image Communication, 28(10),
1448-1463.
Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct?. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp. 1139-1146).
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., & Li, S. (2011, September). Automatic salient object
segmentation based on context and shape prior. In BMVC (Vol. 6, No. 7, p. 9).
Zhu, W., Liang, S., Wei, Y., & Sun, J. (2014). Saliency optimization from robust background detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 28142821).
Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The secrets of salient object
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 280-287).
Sun, J., Lu, H., & Liu, X. (2015). Saliency region detection based on Markov absorption probabilities.
IEEE Transactions on Image Processing, 24(5), 1639-1649.
Wang, L., Lu, H., Ruan, X., & Yang, M. H. (2015). Deep networks for saliency detection via local
estimation and global search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 3183-3192).
Zhao, R., Ouyang, W., Li, H., & Wang, X. (2015). Saliency detection by multi-context deep learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 12651274).
ارسال نظر در مورد این مقاله