Ala, A., Simic, V., Bacanin, N., & Tirkolaee, E. B. (2024). Blood supply chain network design with lateral freight: A robust possibilistic optimization model.
Engineering Applications of Artificial Intelligence, 133, 108053.
https://doi.org/10.1016/j.engappai.2024.108053
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
. CA: A Cancer Journal for Clinicians, 74(3), 229-263.
https://doi.org/10.3322/caac.21492.
Camacho-Villalón, C., Dorigo, M., & Stützle, T. (2025). METAFOR: A hybrid metaheuristics software framework for single-objective continuous optimization problems. arXiv preprint arXiv:2502.11225. https://doi.org/10.48550/arXiv.2502.11225
Dada, S. A., Azai, J. S., Umoren, J., Utomi, E., & Akonor, B. G. (2025). Strengthening US healthcare supply chain resilience through data-driven strategies to ensure consistent access to essential medicines.
International Journal of Research Publications, 164(1), 10-10. https://doi.org/
10.47119/IJRP1001641120257438
Fallahi, A., Mousavian Anaraki, S. A., Mokhtari, H., & Niaki, S. T. A. (2024). Blood plasma supply chain planning to respond COVID-19 pandemic: A case study.
Environment, Development and Sustainability, 26(1), 1965-2016.
https://doi.org/10.1007/s10668-022-02793-7
Goodarzian, F., Taleizadeh, A. A., Ghasemi, P., & Abraham, A. (2021). An integrated sustainable medical supply chain network during COVID-19.
Engineering Applications of Artificial Intelligence, 100, 104188. https://doi.org/
10.1016/j.engappai.2021.104188
Hayden, P. J., Roddie, C., Bader, P., Basak, G. W., Bonig, H., Bonini, C., Chabannon, C., Ciceri, F., Corbacioglu, S., Ellard, R., Sanchez-Guijo, F., Jäger, U., Hildebrandt, M., Hudecek, M., Kersten, M. J., Köhl, U., Kuball, J., … & Yakoub-Agha, I. (2022). Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA).
Annals of Oncology, 33(3), 259-275.
https://doi.org/10.1016/j.annonc.2021.12.003
Herdianto, B., Billot, R., Lucas, F., Sevaux, M., & Vigo, D. (2025). Hybrid node-destroyer model with large neighborhood search for solving the capacitated vehicle routing problem. arXiv preprint arXiv:2508.08659. https://doi.org/10.48550/arXiv.2508.08659
Javadi Gargari, F., Sayad, M., Posht Mashhadi, S. A., Sadrnia, A., Nedjati, A., & Yousefi Golafshani, T. (2021). Five‐Echelon multiobjective health services supply chain modeling under disruption.
Mathematical Problems in Engineering, 2021(1), 5587392.
https://doi.org/10.1155/2021/5587392
Jemai, J., Do Chung, B., & Sarkar, B. (2020). Environmental effect for a complex green supply-chain management to control waste: A sustainable approach.
Journal of Cleaner Production, 277, 122919.
https://doi.org/10.1016/j.jclepro.2020.122919
Kargar, B., MohajerAnsari, P., Büyüktahtakın, İ. E., Jahani, H., & Talluri, S. (2024). Data-driven modeling for designing a sustainable and efficient vaccine supply chain: A COVID-19 case study.
Transportation Research Part E: Logistics and Transportation Review, 184, 103494.
https://doi.org/10.1016/j.tre.2024.103494
KhajavandSany, T., AmoozadKhalil, H., Rezaeian, R., & Nemati, K. (2024). Optimization of multi-objective simulation of excavator-truck loading system for mining minerals.
Journal of Engineering Management & Soft Computing, 10(2), 182-203.
https://doi.org/10.22091/jemsc.2025.11807.1229
Lam, C., Meinert, E., Yang, A., & Cui, Z. (2021). Comparison between centralized and decentralized supply chains of autologous chimeric antigen receptor T-cell therapies: A UK case study based on discrete event simulation.
Cytotherapy, 23(5), 433-451.
https://doi.org/10.1016/j.jcyt.2020.08.007
Lam, C., Meinert, E., Yang, A., & Cui, Z. (2022). Impact of fast-track regulatory designations on strategic commercialization decisions for autologous cell therapies.
Regenerative Medicine, 17(3), 155-174.
https://doi.org/10.2217/rme-2021-0061
Mansur, A., Handayani, D. I., Wangsa, I. D., Utama, D. M., & Jauhari, W. A. (2023). A mixed-integer linear programming model for sustainable blood supply chain problems with shelf-life time and multiple blood types.
Decision Analytics Journal, 8, 100279.
https://doi.org/10.1016/j.dajour.2023.100279.
Nazemi, H., Yousefinejad-Atari, M., & Ghaffari, A. (2022). Development and solution of a three-tier supply chain model to improve quality and reduce probabilistic delivery time.
Engineering Management & Soft Computing, 7(2), 145–177.
https://doi.org/10.22091/jemsc.2018.1544.1046
Papathanasiou, M. M., Stamatis, C., Lakelin, M., Farid, S., Titchener-Hooker, N., & Shah, N. (2020). Autologous CAR T-cell therapies supply chain: Challenges and opportunities?
Cancer Gene Therapy, 27(10), 799-809. https:/doi.org/
10.1038/s41417-019-0157-z
Rekabi, S., Garjan, H. S., Goodarzian, F., Pamucar, D., & Kumar, A. (2024). Designing a responsive-sustainable-resilient blood supply chain network considering congestion by linear regression method.
Expert Systems with Applications, 245, 122976.
https://doi.org/10.1016/j.eswa.2023.122976
Sajjadi, S. J., Sajjadi, M., & Sabzevari, M. (2022). Solving the index-tracking problem using a hybrid firefly metaheuristic algorithm.
Engineering Management & Soft Computing, 7(1), 127–146.
https://doi.org/10.22091/jemsc.2016.585
Shayannia, S. A. (2023). Presenting an agile supply chain mathematical model for COVID-19 (Corona) drugs using metaheuristic algorithms (Case study: Pharmaceutical industry).
Environmental Science and Pollution Research, 30(3), 6559-6572.
https://doi.org/10.1007/s11356-022-22608-6.
Torrado, A., & Barbosa-Póvoa, A. (2022). Towards an optimized and sustainable blood supply chain network under uncertainty: A literature review.
Cleaner Logistics and Supply Chain, 3, 100028.
https://doi.org/10.1016/j.clscn.2022.100028.
Send comment about this article