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1) Introduction 

Recent years have witnessed transformative advancements in personalized medicine and 

immunotherapy, fundamentally reshaping the therapeutic landscape for complex, refractory, and 

relapsing diseases. One of the most prominent achievements in this field is Chimeric Antigen Receptor 

T-cell (CAR-T) therapy. This approach harnesses the genetic engineering of a patient's own immune 

cells to confer a remarkable ability to precisely target and eradicate cancerous cells, demonstrating 

significant success, particularly in relapsed hematological malignancies (Jacoby, 2019). However, the 

CAR-T therapy supply chain is among the most complex structures in healthcare systems. It 

encompasses a series of sensitive and interlinked stages: the collection of viable cells, genetic 

processing, controlled-temperature transportation, secure storage, and ultimate reinfusion into the 

patient. This process is not only highly time-sensitive and delicate but also demands meticulous 

coordination of infrastructure across the entire supply network (Bray et al., 2024). The complexity of 

this chain escalates significantly when a patient experiences disease relapse following initial treatment, 

as decision-making in such scenarios must be rapid, precise, and sustainable, all while operating within 

constrained therapeutic resources. 

Concurrently, modern healthcare systems face increasing pressure to address the triple dimensions 

of sustainability. This implies that the design of therapeutic networks must not focus solely on cost or 

time efficiency; it is imperative to also integrate environmental impacts (such as energy consumption 

and bio-waste generation) and social consequences (including equitable access to treatment and job 

creation) into the decision-making process. Attending to these dimensions, particularly for advanced 

therapies such as CAR-T, constitutes a strategic imperative. 

To bridge clinical realities with mathematical modeling, it is essential to clarify how disease relapse 

scenarios are translated into supply chain design variables and constraints. In practice, relapse generates 

immediate and additional demand, necessitating rapid resource allocation, the deployment of backup 

transportation, and the establishment of post-relapse care centers. In the proposed model, these clinical 

dimensions are represented through parameters for demand at post-relapse care centers, constraints on 

the capacity of vehicles and mobile medical units, and the location-allocation decisions for these 

facilities. Furthermore, the time sensitivity inherent in relapse is incorporated by imposing stringent time 

constraints on manufacturing, transportation, and treatment administration. Therefore, real-world 

therapeutic requirements are integrated into the model as quantitative variables and constraints, ensuring 

that the proposed optimization framework is grounded in operational imperatives rather than being a 

purely abstract theoretical construct. 

Simultaneously, formulating a multi-objective mathematical model that combines these clinical 

realities with economic, environmental, and social criteria results in a complex problem characterized 

by conflicting objectives and a non-linear solution space. Under such conditions, classical optimization 

methods are insufficient, necessitating the use of metaheuristic algorithms (Javadi Gargari et al., 2021). 

In response to this need, the present study aims to develop a multi-objective mathematical model for the 

sustainable design of a CAR-T therapy supply chain under conditions of disease relapse. Furthermore, 

it introduces a novel hybrid algorithm based on the integration of NSGA-IV, ε-MOEA, and SMS-

EMOA, designed to effectively balance convergence speed, solution diversity, and final Pareto front 

precision. 

2) Literature Review 

Papathanasiou et al. (2020) discuss the production and supply chain challenges of CAR T-Cell therapy, 

including increasing demand, complex product and process nature, and intricate logistics. Their research 

focuses specifically on commercial supply chain challenges and presents risks associated with other 

contributing factors. Karakostas et al. (2020) designed a patient-centric, decentralized supply chain 

model for Chimeric T-Cell therapy, formulating it as a Mixed-Integer Linear Programming (MILP) 

model. Hospitals were considered coordinators, and local clinics were designated as treatment 

administration centers. Jemai et al. (2020) integrated environmental concepts into supply chain 
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management to form a dynamic green supply chain management model. They implemented this concept 

for blood platelets, a highly perishable product. Their primary objective was to minimize redundancies 

in blood facility location allocation and create an efficient network for blood platelet collection and 

distribution. Lam et al. (2021) proposed a discrete-event simulation model to compare the operational 

feasibility and manufacturing costs of CAR T products between centralized and decentralized settings. 

They evaluated this simulation regarding resource allocation, cost per treatment, and system resilience 

level using a hypothetical UK system with three demand levels: low, predicted, and high. Their results 

indicated that individual facilities in decentralized systems could share facility costs at high treatment 

volumes. Goodarzian et al. (2021) designed a model to address gaps in the pharmaceutical industry 

mathematical models, incorporating the production-distribution-inventory-allocation-location 

framework in a sustainable medical supply chain. They also considered medicines for COVID-19 

patients and production/delivery periods according to their perishability, designing a multi-objective, 

multi-echelon, multi-product, multi-period model for their sustainable supply chain network. Torrado 

and Barbosa (2022) conducted a review of sustainability in blood supply chains. They examined articles 

published in the past 10 years, categorizing their analysis into three distinct groups: the description of 

stages, strategic-tactical and strategic-operational perspectives, and the examination of sustainability 

dimensions. They pursued three objectives: reviewing literature related to sustainability goals, 

addressing unanswered research questions, and identifying challenges related to modeling, uncertainty, 

and risk. Lam et al. (2022) proposed a framework for commercializing autologous cell therapies and, 

using a illustrative UK example, demonstrated the impact of rapid regulatory approval on capacity 

planning and investment decisions. They proposed a MILP approach to better understand capacity and 

portfolio planning decisions for autologous cell therapies. Mansur et al. (2023) considered a multi-level 

MILP model for a sustainable blood supply chain. Aiming to increase profit by considering multiple 

blood groups, they accounted for total revenue versus total costs, including purchase, transportation, 

production, blood bag shelf-life, and carbon emission. They applied their model to a real-world case 

study. Shayannia (2023) designed a mathematical model incorporating sustainability and a new political 

sustainability objective. Focusing on an agile supply chain strategy, they considered a four-echelon 

network of supplier, wholesaler, retailer, and customer. Fallahi et al. (2024) developed a sustainable 

supply chain network for convalescent plasma during the COVID-19 pandemic. They presented a hybrid 

multi-objective optimization model to minimize total carbon emissions alongside supply chain costs. 

Kargar et al. (2024) developed an agent-based COVID-19 simulation model to record disease 

transmission and predict the number of susceptible individuals and infections. They then created a 

sustainable vaccine supply chain (VSC) considering greenhouse gas impact. 

Rekabi et al. (2024) solved a responsive, sustainable, and resilient blood supply chain network 

considering density using a regression method. They presented an innovative multi-period, multi-

objective nonlinear mixed-integer model for an efficient and responsive Green Blood Supply Chain 

(GBSC) incorporating resilience measures. Ala et al. (2024) designed a blood supply chain network with 

lateral transportation for robust probabilistic optimization. Their objectives included minimizing fixed 

and temporary facility costs, blood product transfer costs, and shortage levels. Dada et al. (2025) 

investigated the challenges of the essential medicine supply chain in the United States during the 

COVID-19 pandemic. Findings revealed that flaws in demand forecasting systems, inventory 

management, and supply chain transparency led to drug shortages and increased costs. This research 

was based on the analysis of real crisis-period data and interviews with key stakeholders. The results 

indicated that novel technologies, such as Artificial Intelligence (AI) and Blockchain, could significantly 

improve drug supply chain resilience. AI, through accurate demand forecasting, and Blockchain, by 

creating transparency and traceability in the supply chain, were among the solutions proposed in the 

study. Camacho-Villalón et al. (2025) presented the METAFOR software framework which uses auto-

configuration tools to automatically generate hybrid continuous optimization algorithms. Their results 

show that these automatically generated hybrid algorithms generally outperform single-method, human-

knowledge-based algorithms. Herdianto et al. (2025) presented a hybrid model for the Capacitated 

Vehicle Routing Problem (CVRP) based on Graph Neural Networks (GNN), which reduces the search 

space guided by a Large Neighborhood Search (LNS) operator. This method, without requiring 
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retraining for different problem sizes, leads to improved solution quality and scalability of up to 30,000 

nodes. 

Table 1( Literature Review 
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Herdianto et 

al. (2025) 

Computational 

Efficiency, 
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Integration of 

Machine 

Learning with 

LNS in a 

Hybrid 

Metaheuristic 

Performance 

Analysis on 

Large 

Datasets 

Algorithm 

Design & 

Simulation 

Non-

Deterministic 

Logistics & 

Transportation, 

Hybrid 

Metaheuristics 

Camacho-

Villalón et al. 

(2025) 

Solution 

Quality, 

Convergence 

Speed 

Automated 

Design of 

Hybrid 

Metaheuristics 

with PSO, 

DE, CMA-ES 

Modules 

Empirical 

Comparison 

with Baseline 

Algorithms 

Software 

Framework 

Development 

& Numerical 

Testing 

Deterministic 
Hybrid 

Optimization 

Dada et al. 

(2025) 

Supply Chain 

Resilience, 
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Management 

Combination 

of AI and 

Blockchain 

for Drug 

Traceability 

Analysis of 

Systemic 

Failures 

during the 

Pandemic 

Analytical 

Case Study 

Non-

Deterministic 

Drug Supply 

Chain 

Management 

Fallahi et al. 

(2024) 

Cost, Carbon 

Emissions 
- 

Mathematical 

Modeling 
Case Study Deterministic Blood Plasma 

Kargar et al. 

(2024) 

Location, 

Cost, 

Environmental 

Impact 

- 

Mathematical 

Modeling, 

Simulation 

Case Study Deterministic Vaccines 

Rekabi et al. 

(2024) 

Green, 

Responsive, 

Sustainable, 

Resilient, 

Queueing 

Theory 

- 
Mathematical 

Modeling 
Case Study 

Non-

Deterministic 
Blood 

Ala et al. 

(2024) 

Cost, 

Shortage, 

Transshipment 

- 

Mathematical 

Modeling, 

Lexicographic 

Random 

Sample 
Probabilistic Blood 

Mansur et al. 

(2023) 
Sustainability - 

Mathematical 

Modeling 
Case Study Deterministic Blood 

Shayannia 

(2023) 

Sustainability, 

Political 
- 

Mathematical 

Modeling 
Case Study Deterministic Pharmaceuticals 

Lam et al. 

(2022) 

Maximizing 

Net Present 

Value 

- 
Mathematical 

Modeling 
Case Study Deterministic Cell Therapy 

Torrado et al. 

(2022) 
Sustainability - - 

Systematic 

Literature 

Review 

Non-

Deterministic 
Blood 
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al. (2021) 
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Production, 

Distribution, 

Inventory, 
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Modeling 
Case Study Deterministic Pharmaceuticals 

Lam et al. 

(2021) 
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Simulation 

Case Study Deterministic CAR T-Cell 

Papathanasiou 

et al. (2020) 
- - - - - CAR T-Cell 

Jemai et al. 

(2020) 

Sustainability, 

Dynamism 
- 

Mathematical 

Modeling 
Case Study Deterministic Blood 

Karakostas et 

al. (2020) 

Cost 

Reduction 
- 

Mathematical 

Modeling 

20 Random 

Samples 
Deterministic CAR T-Cell 

 

blood and vaccine supply chains—valuable for sustainability, location, or inventory management—

they do not fully address the stochastic conditions and highly time-sensitive constraints of CAR-T 

therapy. In blood or vaccine chains, demand is often managed collectively over predictable horizons, 

while in CAR-T therapy, each patient has a unique treatment process where even minor delays can 

impact clinical efficacy. Furthermore, the occurrence of relapse leads to immediate and uncertain 

demand surges that are not well-represented in traditional models. 

Moreover, although some studies have used metaheuristic approaches to solve complex problems 

in therapeutic chains, the combined application of advanced algorithms, particularly under relapse-

sensitive conditions, has not been reported. Recent works on hybrid metaheuristics and robust 

optimization in healthcare supply chains also show that single-stage approaches cannot simultaneously 

meet the needs for solution diversity, convergence speed, and resilience to uncertainty. This gap is 

particularly evident in CAR-T supply chain design, where existing models primarily focus either on 

cost/location dimensions or on deterministic constraints. In contrast, relapse conditions require the 

simultaneous consideration of demand dynamics, stringent time constraints, and the triple-bottom-line 

of sustainability. Accordingly, this study aims to fill this void by presenting a multi-objective 

optimization model coupled with an advanced hybrid metaheuristic algorithm capable of addressing the 

real-world needs of the CAR-T treatment chain under uncertainty and relapse. In response to these gaps, 

the present study offers two key innovations: 

1. Development of a dedicated multi-objective modeling framework specifically designed for 

CAR-T therapy supply chain design under relapse conditions, incorporating sustainability 

criteria. 

2. Introduction of a novel, advanced hybrid metaheuristic algorithm that leverages a three-

stage integration of NSGA-IV, ε-MOEA, and SMS-EMOA. Employing the Taguchi 

experimental design method for systematic parameter tuning, this algorithm uniquely 

ensures three key features simultaneously: high Pareto front quality, solution diversity, and 

convergence speed for complex therapeutic problems. 

This novel approach not only addresses theoretical gaps in the literature but also provides practical 

solutions for optimizing the supply chain of advanced cell therapies under real-world conditions. The 

unique combination of advanced mathematical modeling with hybrid optimization algorithms enables 

more efficient decision-making in the face of dynamic healthcare system challenges. 

3) Methodology  

Chimeric Antigen Receptor T-cell (CAR-T) therapy is a highly personalized and time-sensitive 

treatment that requires a precise and coordinated therapeutic supply chain. The process begins with a 

patient visiting a specialized hospital for initial examination and eligibility confirmation. Upon approval, 
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two blood samples are collected from the patient via leukapheresis. These samples are subsequently 

transported by specialized blood transport vehicles, subject to scheduling and capacity constraints, to 

therapy manufacturing centers. Each vehicle must deliver the samples within a specified time window 

and geographical radius, provided that the total input volume to any center does not exceed its 

operational capacity (Hayden et al., 2022). The activation of a manufacturing center is determined by 

its operational capacity, the spatial distribution of demand, and its proximity to hospitals and infusion 

sites. Each active center is allocated to a specific set of hospitals and infusion sites to maximize the 

efficiency of the manufacturing and delivery process. 

Following the completion of manufacturing and final approval, the produced therapy is transported 

to the infusion site by a mobile medical unit accompanied by a specialist physician. Infusion sites are 

selected based on proximity to the manufacturing center and transportation constraints. If the patient 

chooses their residence as the infusion site, a mobile unit is dispatched to their home. Alternatively, if a 

local clinic is preferred, vehicle allocation is based on availability and the aggregated demand for that 

time period. To ensure timely delivery, only one mobile unit is assigned to each infusion site per service 

period. To cover patients in case of disease relapse, a backup vehicle is allocated to each infusion site. 

These vehicles are responsible for transporting relapsed patients to post-relapse care centers. The 

allocation of these care centers is based on demand patterns at each infusion site. The entire supply chain 

structure is designed to meet all therapeutic demands, ensuring that manufacturing, delivery, and 

infusion processes occur within clinically acceptable timeframes. Furthermore, each infusion site is 

linked to a dedicated post-relapse care center to guarantee comprehensive treatment services and follow-

up. 

In this paper, the conceptual model structure was first designed according to the characteristics of 

CAR-T therapy. Subsequently, a deterministic optimization model was developed for decision-making 

across various domains, including facility location, inventory control, production planning, and 

transportation routing (Kargar et al., 2024). Although the model is formulated with deterministic 

assumptions, given the inherently uncertain nature of the treatment environment, it can be extended to 

robust or fuzzy forms. Input data was generated using random number generation methods based on 

hypothetical yet realistic scenarios, as real-world data is unavailable due to the novelty of the treatment. 

The definitions of indices, parameters, and model variables are presented in Table 2. To verify the 

validity and efficiency of the proposed model, it was evaluated using the proposed hybrid metaheuristic 

algorithm. This algorithm was developed by hierarchically integrating three approaches: NSGA-IV, ε-

MOEA, and SMS-EMOA. The computational implementation was performed using the Python 

programming language (version 3.9), utilizing specialized libraries including DEAP and NumPy. 

3.1) Mathematical Modeing 

The assumptions of the mathematical model are summarized as follows: 

• Intra-center production scheduling of the therapy is not considered. 

• All blood samples used are fresh. 

• Pre-infusion chemotherapy is administered by mobile units or clinics. 

• Each clinic is dependent on only one manufacturing center and one hospital. 

• Each infusion site (home or clinic) receives service only once per period. 

• Mobile medical units are dispatched from manufacturing centers and return after service. 

• Transportation of relapsed patients is performed by dedicated ambulances. 

• Post-relapse care centers have specified capacities and fixed stay durations. 

• Two units of blood from the patient are required for each CAR-T therapy unit. 
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Table 2 (Definition of Indices, Parameters and Variables of the Mathematical Model 

Symbol Description 

H  Set of hospitals for receiving blood, ℎ ∈ 𝐻 

B  Set of hospitals for transfusion, 𝑏 ∈ 𝐵 

K  Set of clinics for transfusion, 𝑘 ∈ 𝐾 

P  Set of patients’ homes for transfusion, 𝑝 ∈ 𝑃 

F  Set of T-cell production centers, 𝑓 ∈ 𝐹 

S  Set of post-treatment care centers (SOS), 𝑠 ∈ 𝑆 

T  Set of courses, 𝑡 ∈ 𝑇 

V  Set of cars for transporting blood, 𝑣 ∈ 𝑉 

M  Set of cars for transporting people or sending produced T-cells, 𝑚 ∈ 𝑀 

W = {B, P, K}  Set of hospital, clinic, and patient collections for T-cell transfusion, 𝑤 ∈ 𝑊 

Parameter Description 

vtCX
 

Transportation cost per unit distance by vehicle v in period t. 

hfDX
 

Distance between centers h and f. 

mtCZ
 

Transportation cost per unit distance by vehicle m in period t. 

fwDZ
 

Distance between centers f and w. 

wsDG
 

Distance between centers w and s. 

fFR
 

Fixed cost of establishing production center f. 

sFL
 

Fixed cost of establishing SOS center s. 

wtCS
 

Service cost at center w in period t. 

stCO
 

Service cost per patient at SOS center s in period t. 

wtPR
 

Probability of patient relapse after treatment at center w in period t. 

m  
Environmental pollution per unit distance traveled by vehicle m. 

v  
Environmental pollution per unit distance traveled by vehicle v. 

f  
Environmental pollution per unit of production at center f. 

s  
Environmental pollution per patient post-relapse care at center s. 

f  
Personnel required per unit of production at center f. 

s  
Personnel required per patient post-relapse care at center s. 

fCE
 

Hiring cost per personnel per unit of production at center f. 

sCE
 

Hiring cost per personnel per patient post-relapse care at center s. 

vCV
 

Capacity of vehicle v for blood transportation. 

mCM
 

Capacity of vehicle m for transportation between centers. 

sBW
 

Maximum capacity for post-relapse patient care at SOS center s. 

hCG
 

Admission capacity of hospital h for blood sample collection. 

fCP
 

T-cell production capacity at production center f. 

wtDB
 

Number of patients at center w in period t. 

wtDW
 

Number of patients experiencing relapse after treatment at centers w in period t. 

hfvtTR
 

Transportation time between centers h and f by vehicle v in period t. 

fwmtTR
 

Transportation time between centers f and w by vehicle m in period t. 



A Novel Hybrid Algorithm for Designing a Sustainable Supply Chain of CAR-T Therapy in a Multi-Objective Mode Considering 

Disease Relapse                                                                                                                                              8  

 

 

ftSK
 

T-cell production time at center f in period t. 

wtTS
 

Service time for patient injection at center w in period t. 

wtTU
 

Maximum allowable time for T-cell injection to patients at center w in period t. 

Positive Variables Description 

ftCA
 

Time to complete T-cell production at center f in period t. 

wmtCT
 

Time to complete T-cell injection at center w provided by vehicle m in period t. 

Binary Variables Description 

hfvtQ
 

One if blood is transported from hospital h to production center f by vehicle v in period 

t, zero otherwise. 

fwmtE
 

One if a connection is established from production center f to center w (hospitals, clinics, 

patients' homes) for T-cell injection by vehicle m in period t, zero otherwise. 

wsmtG
 

One if a connection is established from center w to SOS center s for post-treatment relapse 

care by vehicle m in period t, zero otherwise. 

fR
 

One if production center f is selected, zero otherwise. 

sL
 

One if SOS center s is selected for post-relapse care, zero otherwise. 

Integer Variables Description 

htY
 

Number of individuals admitted to hospital h in period t for blood sample collection. 

hfvtX
 

Number of blood samples dispatched from hospital h to production center f by vehicle v 

in period t. 

wsmtGX
 

Number of patients dispatched from center w to SOS center s for post-treatment relapse 

care by vehicle m in period t. 

fwmtZ
 

Number of T-cells dispatched from production center f to center w (hospitals, clinics, 

patients' homes) by vehicle m in period t. 

 

Objective Functions of the Proposed Model: 

The objective function F1 involves minimizing the fixed costs of establishing T-cell production 

centers and SOS centers, transportation between centers, injection services at W centers (hospitals, 

clinics, and patients’ homes), post-relapse care services, and personnel hiring. 

( 1) f f s s

f F s S

Min F R CR L CL
 

=  +  
 

vt hf hfvt

h H f F v V t T

CX DX Q
   

+   + mt fw fwmt

f F w W m M t T

CZ DZ E
   

  + 

mt ws wsmt

w W s S m M t T

CZ DG G
   

 
 

wt fwmt

t T w W f F m M

CS Z
   

+    st wt wsmt

t T s S w W m M

CO PR GX
   

+   
 

f fwmt

f F t T w W m M

CE Z
   

+    s wt wsmt

s S t T w W m M

CE PR GX
   

+    
                                                (1) 

The objective function F2  aims to minimize environmental pollution emissions generated by 

transportation vehicles, production centers, and SOS centers. 

( 2)Min F =  

v hf hfvt

h H f F v V t T

DX Q
   

+   + m fw fwmt

f F w W m M t T

DZ E
   

  + 

m ws wsmt

w W s S m M t T

DG G
   

 
 

f fwmt

t T f F w W m M

Z
   

+    s wt wsmt

t T s S w W m M

PR G
   

+    
                                                           (2) 
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The objective function F3 seeks to maximize employment and job creation within the production 

centers and post-relapse care facilities. 

( 3)Max F =
f fwmt

f F t T w W m M

Z
   

   s wt wsmt

s S t T w W m M

PR GX
   

+    
                                 (3) 

 

Constraints:  

Constraint (4) specifies the hospitals designated to collect blood from patients. 

(4) t T   ht wt

h H w W

Y DB
 

= 
 

Constraint (5) ensures the maximum blood collection capacity of each hospital is not exceeded. 

 

   (5) ,h H t T                         ht hY CG
 

Constraint (6) calculates the quantity of blood shipped from hospitals to T-cell producers based on 

the number of admitted patients. 

 

(6) ,h H t T    hfvt ht

f F v V

X Y
 

=
 

Constraint (7) enforces the maximum transportation capacity for vehicles shipping materials from 

hospitals to production centers. 

(7) , , ,h H v V f F t T      hfvt v hfvtX CV Q 
 

 

Constraint (8) establises a conditional relationship between variables and ensures that if one 

variable is zero, then the other must also be zero. 

(8) , , ,h H v V f F t T      hfvt hfvtQ X
 

Constraint (9) ensures that the quantity of blood samples shipped from hospitals to production 

centers equals the quantity of produced T-cells shipped from production centers to W centers. 

(9) ,f F t T    hfvt fwmt

h H v V w W m M

X Z
   

=  
 

Constraint (10) calculates the shipment quantity of T-cells from production center f to W centers. 

(10) ,w W t T    fwmt wt

f F m M

Z DB
 

= 
 

Constraint (11) imposes an upper bound on the maximum T-cell production capacity at the 

production centers. 

(11) ,f F t T    fwmt f f

w W m M

Z CP R
 

  
 

Constraint (12) enforces the maximum transportation capacity for vehicles shipping goods from 

production centers to W centers. 

(12) , , ,f F w W m M t T      fwmt m fwmtZ CM E 
  

Constraint (13) defines a logical linkage between variables, where if one variable is zero, then the 

other variable is forced to zero. 

(13) , , ,f F w W m M t T      fwmt fwmtE Z
 

Constraint (14) calculates the completion time for T-cell production at the production centers. 

(14) , , ,h H v V f F t T      (1 )ft hfvt ft hfvt hfvtCA TR SK X MM Q +  −  −
 

Constraint (15) calculates the arrival time of the required T-cells to patients at home, clinics, and 

hospitals. 
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(15) , , ,w W m M f F t T      ( ) (1 )wmt ft wt fwmt fwmt fwmtCT CA TS Z TR MM E +  + −  −
 

Constraint (16) determines the maximum allowable arrival time for required blood products to 

patients at home, clinics, and hospitals. 

(16) , , ,w W m M f F t T      wmt wt fwmt

f F

CT TU E


 
 

Constraint (17) calculates the number of patients admitted to the SOS center. 

(17) ,w W t T    wsmt wt

s S m M

GX DW
 

=
 

Constraint (18) guarantees that the number of admitted patients does not exceed the acceptance 

capacity of the SOS center. 

  (18) ,w W t T    wsmt s

w W m M

GX BW
 

 
 

Constraint (19) enforces the maximum transportation capacity for vehicles moving from W centers 

to the SOS center. 

(19) , , ,f F w W m M t T      wsmt m wsmtGX CM G 
 

Constraint (20) establishes a dependency between variables wsmtGX
 and wsmtG

, stipulating that if 

wsmtGX
 is zero, then wsmtG

must be zero. 

(20) , , ,f F w W m M t T      wsmt wsmtG GX
 

Constraints (21) to (23) specify the nature and bounds of the decision variables, imposing non-

negativity and integrality requirements. 

(21) 
wmtCT

,
0ftCA 

                                                              

(22) 
hfvtQ

, fwmtE
, wsmtG

, fR
,

{0,1}sL 
 

(23) 
htY

, hfvtX
, wsmtGX

, fwmtZ Integer
 

3.2) Solution Methodology 

Given the complexity of the developed mathematical model for a sustainable CAR-T cell therapy supply 

chain under relapse conditions, the use of a powerful, adaptable, and multi-objective optimization 

algorithm is essential (Nazemi et al., 2022). The model simultaneously aims to minimize costs, reduce 

environmental impact, and maximize social satisfaction. Classic metaheuristic algorithms individually 

face challenges in simultaneously ensuring diversity, convergence, and precision within the Pareto front 

(Sajjadi et al., 2022). Therefore, this research presents a novel hybrid algorithm that, by concurrently 

utilizing three algorithms—NSGA-IV, SMS-EMOA, and ε-MOEA—provides an optimal and balanced 

performance. 

3.2.1) Core Components of the Proposed Hybrid Algorithm 

3.2.1.1) NSGA-IV (Non-Dominated Sorting Genetic Algorithm IV) 

NSGA-IV is an advanced version of the NSGA-II algorithm, developed to enhance performance in 

tackling multi-objective optimization problems. By implementing new mechanisms in parent selection, 

utilizing normalized reference points, and maintaining population diversity across various evolutionary 

stages, this version has largely overcome the limitations of its predecessors. NSGA-IV demonstrates 

particularly stable performance in high-dimensional problems with conflicting objectives, capable of 

producing solutions that are more diverse and convergent towards the true Pareto front compared to 

earlier versions. A fundamental difference between NSGA-IV and NSGA-II is the replacement of the 
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rank-and-crowding comparison method with a more precise and adaptive approach, enabling more 

effective parent selection at different algorithm stages (KhajavandSany et al., 2024). 

Within the structure of the proposed hybrid algorithm in this research, NSGA-IV is used as the core 

engine for initial non-dominated sorting and structural diversity preservation of the population. 

Specifically, its main applications in the proposed combination are as follows: 

• Initial Non-dominated Sorting: Utilizing a precise and stable sorting process, NSGA-IV 

categorizes initial solutions based on non-domination, establishing the necessary initial 

conditions for forming the Pareto front. 

• Use of Normalized Reference Points: To ensure a uniform distribution of solutions in the 

objective space, this algorithm employs normalized reference points. This feature reduces 

non-homogeneous clustering of solutions in certain regions of the Pareto space, leading to 

enhanced coverage across the entire objective space. 

• Diversity Preservation via Modified Crowding Mechanism: NSGA-IV uses an 

advanced mechanism for calculating crowding distance, adaptively selecting solutions that 

converge towards more efficient regions while preventing excessive overlap in the solution 

space. This increases the algorithm's stability in subsequent iterations. 

In summary, NSGA-IV, by combining high convergence speed, maintaining desirable diversity, 

and the intelligent use of reference points, plays a vital role in the initial phase of the proposed hybrid 

algorithm, setting the stage for effective interaction with other components. 

3.2.1.2) ε-MOEA (ε-Multi-Objective Evolutionary Algorithm) 

ε-MOEA is a multi-objective evolutionary algorithm designed to increase convergence speed and 

guarantee Pareto front quality by utilizing the concept of ε-(grid) in the objective space. In this 

algorithm, the solution space is divided into distinct sections (ε-cells), and only one superior solution is 

retained per cell. This mechanism prevents redundant repetition of solutions and inherently preserves 

answer diversity in the objective space. Compared to other classic algorithms, ε-MOEA has a higher 

convergence rate since, by eliminating the need for complete non-dominated sorting, it makes decisions 

based solely on ε-dominated comparisons. This is particularly important in large-scale, high-

dimensional problems. 

Within the framework of the proposed hybrid algorithm, ε-MOEA is used in the second stage to 

accelerate population convergence and constrain the search space. Its key roles in the hybrid structure 

are: 

• Enhancing Convergence to the Pareto Front at a High Rate: Utilizing ε-based criteria, 

the algorithm selects solutions that gradually move closer to the Pareto front. 

• Reducing Computational Complexity: By eliminating extensive non-dominated sorting, 

the algorithm demonstrates higher efficiency across numerous iterations, especially when 

the population size is large. 

• Implicit Diversity Control: Although the algorithm's primary focus is convergence, the 

use of the ε-constraint helps maintain relative diversity among solutions, preventing the 

accumulation of answers in a specific region. 

In summary, ε-MOEA, by balancing convergence speed and structural simplicity, serves as a highly 

suitable complement to NSGA-IV within the hybrid algorithm structure. 

3.2.1.3) SMS-EMOA (S-Metric Selection Evolutionary Multi-Objective Algorithm) 

SMS-EMOA is a selection algorithm based on the Hypervolume performance metric, specifically 

developed to improve Pareto front quality and optimize final selections. In this algorithm, the 

mechanism for selecting individuals is not based solely on non-domination or crowding distance, but on 

each individual's contribution to increasing the Pareto Hypervolume. This feature allows SMS-EMOA 

to focus on preserving and expanding valuable regions of the objective space, retaining solutions that 

directly contribute to improving Pareto front coverage. 
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In the structure of the proposed hybrid algorithm, SMS-EMOA is used as the final stage for refining 

the Pareto front. Its main roles are: 

• Final Quality Improvement of the Pareto Front: Using the Hypervolume metric, only 

solutions with a higher contribution to covering the objective space are retained. 

• Elimination of Ineffective Solutions: Instead of relying solely on domination or spread, 

the algorithm accurately removes individuals with minimal impact on improving the overall 

Pareto quality. 

• Enhancement of Uniformity and Boundary Precision: SMS-EMOA selects solutions 

that improve uniformity while also more accurately reconstructing the front's boundary. 

Therefore, SMS-EMOA constitutes the final stage of the hybrid algorithm, stabilizing the final 

solutions with the highest quality and precision in the objective space. 

3.2.2) Theoretical Justification for Algorithm Hybridization 

The selection of the sequential combination of NSGA-IV, ε-MOEA, and SMS-EMOA, and the 

avoidance of incoherent approaches is based on theoretical principles of hybrid multi-objective 

evolutionary algorithms. This demonstrates the superiority of integrating methods with complementary 

capabilities for solving complex multi-objective problems. NSGA-IV, using advanced non-dominated 

sorting and normalized reference points, ensures a uniform distribution of solutions in the objective 

space, while ε-MOEA, by utilizing the concept of ε-dominance, accelerates rapid convergence to the 

Pareto front and reduces computational complexity. SMS-EMOA refines the quality of the Pareto front 

boundaries through Hypervolume-based selection and prevents the removal of key solutions. This 

hybrid approach is inspired by recent work in hybrid multi-objective algorithms, such as the Metaphor 

framework, which uses automatic algorithm combination for continuous optimization (Camacho-

Villalón et al., 2025), indicating that automated hybrid algorithms can outperform single-method 

approaches. Furthermore, a study by Herdianto et al. (2025) on solving complex routing problems by 

combining Graph Neural Networks and Large Neighborhood Search emphasizes the advantage of 

combining algorithms with complementary strengths. In the supply chain domain, Roknabadi et al. 

(2024), by designing a multi-objective model for a blood supply chain, demonstrated that hybrid 

approaches can effectively improve solution diversity and quality in complex problems. This structured 

combination, by reducing nonlinear search space and increasing Hypervolume coverage, ensures a 

balance between exploration and exploitation and, from a mathematical perspective, provides more 

stable convergence in sensitive problems like CAR-T therapy supply chains. 

3.2.3) Overall Structure of the Proposed Hybrid Algorithm 

The proposed metaheuristic algorithm of this research has a multi-stage, adaptive structure designed to 

simultaneously exploit the advantages of three advanced algorithms: NSGA-IV, ε-MOEA, and SMS-

EMOA. This hybrid algorithm is executed through six key stages, detailed below (Table 3). 

Stage 1: Parameter Tuning and Initial Population Generation: To address the need for precise 

tuning of the proposed hybrid algorithm's parameters (mutation rate, population size, crossover 

probability), the Taguchi Design of Experiments method was selected due to its computational 

efficiency and ability to reduce the number of experiments required to find the optimal parameter 

combination. Compared to the Response Surface Methodology (RSM), which is suitable for modeling 

nonlinear relationships but requires more experiments and continuous data, the Taguchi method, using 

orthogonal arrays, enables the systematic evaluation of parameters in discrete problems like 

metaheuristic algorithms with lower computational cost. Additionally, meta-adaptive tuning, while 

highly flexible, is less suitable for time-sensitive problems like CAR-T therapy supply chains due to its 

computational complexity and need for frequent retraining (Camacho-Villalón et al., 2025). This choice 

aligns with recent studies in hybrid algorithm optimization that emphasize the efficiency of orthogonal 

array-based methods for complex problems (Herdianto et al., 2025). 
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Therefore, in the first step, the algorithm systematically determines the optimal values for key 

parameters of each sub-algorithm (e.g., mutation rate, population size, crossover probability, etc.) using 

the Taguchi Design of Experiments method. The Taguchi method operates based on Orthogonal Arrays 

and the analysis of the Signal-to-Noise Ratio (S/N). The goal is to find a combination of parameter levels 

that makes the response function less sensitive and more stable against environmental fluctuations. 

      For each experimental combination i, the S/N ratio is calculated as per Equation 24: 

 
 Si

N
=  log10(

1

n
∑ yij

2).10n
j=1                                                                                                                          (24) 

Where: 

• yijis the observed response value in experiment i and repetition j. 

• n is the number of repetitions per experiment. 

• The objective is to maximize the S/N value for performance stability. 

In this research, a suitable orthogonal array was used based on the number of parameters and their 

considered levels. After conducting the experiments, the optimal parameter combination was selected 

based on the highest average S/N value. Subsequently, the initial population is generated based on the 

defined valid ranges for the decision variables in the mathematical model. Each solution is represented 

as a chromosome with integer encoding, containing key information such as treatment location, resource 

allocation, logistical routes, and therapy infusion scheduling under relapse conditions. 

Stage 2: Execution of the NSGA-IV Algorithm: In this stage, the NSGA-IV algorithm is used as 

the main engine for initial non-dominated sorting and maintaining the structural diversity of the 

population. Utilizing normalized reference points, this algorithm strives to distribute solutions uniformly 

in the objective space. Furthermore, its advanced crowding distance mechanism prevents excessive 

concentration of solutions in specific regions and enhances the uniformity of the Pareto front. 

Stage 3: Execution of the ε-MOEA Algorithm: After achieving suitable initial diversity, the 

algorithm enters the convergence stage. Here, the ε-MOEA algorithm is used, which applies the concept 

of ε-cells to divide the objective space into distinct regions and allows only one solution to be retained 

per region. This feature significantly increases the convergence rate towards the Pareto front by focusing 

on key points and prevents redundant iteration of solutions. 

Stage 4: Execution of the SMS-EMOA Algorithm: In this stage, the SMS-EMOA algorithm is 

employed for the final refinement of the population. This algorithm operates based on the Hypervolume 

metric, retaining solutions that contribute the most to expanding the Pareto front. Therefore, solutions 

located on the critical boundaries of the objective space are preserved, while low-impact solutions are 

eliminated. This stage plays a vital role in the final precision of the Pareto front. 

Stage 5: Updating the External Archive: An External Archive is continuously updated throughout 

the algorithm's execution. At the end of each generation, solutions that have not been dominated in any 

stage and have high added value are included in this archive. This archive prevents the accidental 

removal of desirable solutions in subsequent iterations and maintains a set containing the best solutions 

for the final analysis. 

Stage 6: Termination Condition Check and Final Output Generation: The algorithm continues 

until one of the following stopping conditions is met: 

• Reaching the pre-defined maximum number of generations. 

• Stability of the algorithm's performance over several consecutive generations, i.e., no 

significant improvement in evaluation metrics. 

Upon completion, the external archive is presented as the final output, containing a set of non-

dominated Pareto-optimal solutions that can serve as the basis for multi-criteria decision-making by 

CAR-T therapy supply chain network designers. 

Table 3) The Structure of the Proposed Hybrid Algorithm 

Stage Algorithmic Operation Specialized Description 
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1 
Parameter Tuning & Initial 

Population Generation 

Parameter tuning based on Taguchi Design of Experiments and 

generation of initial population according to decision variable 

ranges. 

2 
Execution of NSGA-IV 

Algorithm 

Initial non-dominated sorting, use of normalized reference points 

for uniform distribution, diversity preservation using crowding 

distance. 

3 
Execution of ε-MOEA 

Algorithm 

ε-dominance examination to increase convergence rate, search 

space control by retaining representative solutions. 

4 
Execution of SMS-EMOA 

Algorithm 

Final population refinement using the Hypervolume metric, 

elimination of low-impact solutions, improvement of final Pareto 

front quality. 

5 Updating External Archive 
Retention of best solutions from previous stages and the removal 

of dominated or duplicate answers. 

6 Termination Condition Check 

Algorithm termination upon reaching maximum generations or 

lack of improvement over consecutive generations, the 

presentation of final solution. 

 

The hybrid algorithm presented in this research possesses the following key innovations that 

distinguish it from existing approaches in the literature: 

1. Structured integration of three distinct evolutionary approaches—NSGA-IV, ε-MOEA, 

and SMS-EMOA—to simultaneously exploit their complementary capabilities in 

diversification, rapid convergence, and precise solution refinement. 

2. Implementation of adaptive control for mutation and crossover rates using feedback from 

the current generation's performance, dynamically aligning the rate of change with the 

progress achieved on the Pareto front. 

3. Increased precision in covering critical and boundary regions of the Pareto front 

through the targeted use of the SMS-EMOA algorithm and the Hypervolume metric as the 

final selection indicator. 

4. Maintenance of a dynamic balance between exploratory (Exploration) and exploitative 

(Exploitation) processes, relying on the algorithm's intelligent selection mechanism in each 

generation, which adaptively activates one of the three algorithms based on the current state 

of the front and the problem-solving requirements. 

These innovations, coupled with the use of Taguchi Design of Experiments for precise parameter 

tuning, have enabled the proposed algorithm to demonstrate significant superiority over single-stage or 

traditional algorithms in terms of performance, stability, and output quality. 

4) Findings and Discussion 

It should be noted that although this study employs synthetic data generated via controlled random 

methods, the selection of parameter ranges was not arbitrary. It was based on a combination including 

the reputable work of Karakostas et al. (2020), library reports, and relevant databases. For instance, 

distance ranges were defined based on the real geographical distances within Iran, and costs related to 

vehicles and medical centers were determined using values reported in specialized sources. The supply 

chain structure comprises specialized hospitals, therapy production centers, local clinics, patients' 

homes, and post-relapse care centers. The number of these entities for each numerical instance was 

randomly selected within a range of 1 to 10. However, it is acknowledged that the lack of access to real 

clinical and industrial data in the CAR-T therapy domain constitutes a limitation for this research. 

Demand per household was set as a fixed unit, while demand for each clinic or hospital was 

generated as a random integer. To design the transportation infrastructure, the required number of 

vehicles for transporting blood samples, transferring medical staff, and patient relocation was 

determined to ensure the ability to meet the maximum existing demand. The fixed cost of equipping a 

vehicle for blood transport, based on the specifications of a specialized van according to Karakostas et 
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al., was set at $23,500. Furthermore, the cost of equipping an ambulance for transferring doctors and 

medical equipment was estimated at approximately $32,500. The cost of establishing a T-cell therapy 

production center or a post-relapse patient care center was considered to be around $170,000. The 

operational costs for treatment centers and hospitals were set as random numbers within the ranges of 

$11-$54 and $32-$107, respectively. The wage for a specialist doctor was set at $11.77 per hour, while 

the wages for vehicle drivers is set at $9.63 per hour. The average transportation speed was considered 

to be 55 km/h. Additionally, the average cost per kilometer traveled for vehicles was estimated at 

approximately $0.547. The distance between different nodes in the chain was randomly defined within 

a range of 100 to 3000 kilometers, based on Iran's geographical scale. The therapy production time was 

set at 168 hours (one week), and the total duration of the therapeutic cycle was considered to be 336 

hours. From an environmental perspective, the pollution generated per patient per day was considered 

to be between 140 and 155 kilograms, encompassing solid waste and carbon dioxide emissions. Each 

medical laboratory produces an average of about 8 kilograms of waste daily. Moreover, the 

environmental pollution from transportation was calculated as 0.2485 kilograms per kilometer. In the 

social dimension, the number of direct job opportunities created per production center or patient care 

center, for a full capacity of up to 24 beds, was set at 98 individuals. 

Furthermore, a key challenge in designing metaheuristic algorithms is the optimal tuning of 

parameters such as mutation rate, population size, and crossover probability. Inappropriate selection of 

these parameters can lead to a significant decrease in the accuracy, diversity, or convergence speed of 

solutions. In this study, the Taguchi experimental design method was employed to determine suitable 

parameter values for the base and hybrid algorithms. This method systematically examines different 

parameter combinations using orthogonal arrays and Signal-to-Noise (S/N) ratio analysis, selecting the 

combination that demonstrates the greatest stability and optimal performance against environmental 

variations. The parameters for the SMS-EMOA, ε-MOEA, and NSGA-IV algorithms are presented in 

Table 4. 

Table 4) Parameters for SMS-EMOA, ε-MOEA, and NSGA-IV Algorithms 

Algorithm: NSGA-IV 

Parameter Name Set Value Description 

Population Size 100 Initial population size 

Number of Generations 250 Total generations to execute 

Crossover Rate (Pc) 0.9 Parent crossover rate 

Mutation Rate (Pm) 0.1 Genetic mutation rate 

Reference Points Auto-generated Reference vectors for uniform distribution in objective space 

Selection Strategy Tournament (Size 2) Parent selection method 

Crossover Operator SBX Type of crossover operator 

Mutation Operator Polynomial Mutation Type of mutation operator 

Algorithm: ε-MOEA 

Parameter Name Set Value Description 

Population Size 100 Population size 

Epsilon Value (ε) 0.01–0.05 Step size ε in objective space 

Archive Size 100 Capacity of non-dominated solution archive 

Crossover Rate (Pc) 0.85 Crossover rate 

Mutation Rate (Pm) 0.15 Mutation rate 

Replacement Strategy Steady-State Method for updating population and archive 

Algorithm: SMS-EMOA 

Parameter Name Set Value Description 

Population Size 100 Population size 

Archive Size 100 Size of stored Pareto front archive 

Hypervolume Reference 

Point 
[1.1, 1.1, 1.1] Reference point for hypervolume calculation 

Crossover Rate (Pc) 0.9 Crossover rate 

Mutation Rate (Pm) 0.1 Mutation rate 

Selection Method 
Hypervolume 

Improvement 
Selection based on hypervolume improvement 
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The proposed hybrid algorithm, with a three-phase adaptive structure, leverages the advantages of 

all three base algorithms. Its key parameters are tuned to deliver maximum stability and solution quality. 

Table 5 shows the final configurations of this algorithm. 

Table 5) Parameters of the Proposed Hybrid Algorithm 

Parameter Name Set Value Tuning Method Description 

Population Size 120 Taguchi Design 
Total individuals per generation, shared 

across all phases. 

Number of Generations 300 Taguchi Design 
Maximum algorithm iterations for 

evolution completion. 

ε-MOEA Phase Ratio 

(Initial) 
0.3 

Empirical & Sensitivity 

Analysis 

Percentage of generations for initial 

convergence focus. 

NSGA-IV Phase Ratio 

(Core) 
0.4 Empirical & S/N Test 

Percentage of generations for diversity 

expansion and exploration. 

SMS-EMOA Phase Ratio 

(Final) 
0.3 

Empirical & 

Hypervolume-based 

Percentage of generations for final 

refinement and Pareto front precision. 

Adaptive Mutation Rate 

Range 
[0.05–0.2] 

Taguchi + Performance 

Monitoring 

Mutation rate adjusted dynamically 

based on algorithm progress. 

Adaptive Crossover Rate 

Range 

[0.85–

0.95] 

Taguchi + Dynamic 

Control 

Crossover rate adjusted dynamically 

based on convergence trends. 

ε-adaptation Threshold 0.02 Empirical 

Threshold for change in ε-dominance 

criterion to trigger dynamic selection 

shift. 

External Archive Size 150 
Standard + Sensitivity 

Analysis 

Capacity for retaining non-dominated 

solutions throughout the algorithm. 

Algorithm Switching 

Interval 

Every 10 

gens 

Empirical & 

Convergence-based 

Interval for switching algorithms in the 

adaptive phase. 

Hypervolume 

Improvement Threshold 
0.01 Sensitivity Test 

Condition for activating the final phase 

(SMS-EMOA) to increase precision. 

 

The results obtained from solving the numerical examples are presented in Table 6. 

Table 6) Results of Solving Numerical Examples 

Example Algorithm 

Number of 

Non-

Dominated 

Solutions 

Cost (USD) 
Environmental 

Pollution (kg) 

Social 

Impact 

(Persons) 

Computation 

Time (s) 

1 

NSGA-IV 120 83,750,000 88,300 1,090 270 

ε-MOEA 115 84,200,000 89,500 1,085 250 

SMS-

EMOA 
130 82,900,000 87,100 1,092 290 

Proposed 

Hybrid 
150 81,600,000 86,200 1,100 230 

2 

NSGA-IV 120 186,000,000 96,400 2,260 1080 

ε-MOEA 110 185,000,000 97,800 2,250 1,100 

SMS-

EMOA 
130 184,000,000 95,700 2,270 1,050 

Proposed 

Hybrid 
160 182,000,000 94,300 2,280 950 

3 

NSGA-IV 120 245,500,000 118,000 3,050 1,500 

ε-MOEA 115 247,000,000 119,500 3,040 1,450 

SMS-

EMOA 
130 245,500,000 118,000 3,050 1,050 

Proposed 

Hybrid 
160 245,500,000 118,000 3,050 1,050 
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4 

NSGA-IV 120 405,000,000 118,000 3,930 4900 

ε-MOEA 115 407,000,000 119,000 3,920 4700 

SMS-

EMOA 
130 403,000,000 117,000 3,940 5100 

Proposed 

Hybrid 
160 400,000,000 115,000 3,950 4600 

5 

NSGA-IV 120 485,000,000 138,000 4710 3300 

ε-MOEA 115 487,000,000 139,000 4700 3100 

SMS-

EMOA 
130 483,000,000 137,000 4720 3500 

Proposed 

Hybrid 
160 480,000,000 135,000 4730 2950 

6 

NSGA-IV 120 605,000,000 153,000 5,130 5900 

ε-MOEA 115 608,000,000 155,000 5090 5700 

SMS-

EMOA 
130 602,000,000 152,000 5110 6100 

Proposed 

Hybrid 
160 598,000,000 150,000 5120 5500 

 

Table 6, which compares the results of six numerical examples among the NSGA-IV, ε-MOEA, 

SMS-EMOA, and the proposed hybrid algorithm, demonstrates the superior performance of the hybrid 

algorithm across various dimensions of the problem. A comparative analysis of the results is provided 

below: 

Regarding the number of non-dominated solutions, the proposed hybrid algorithm generated the 

highest number of solutions across all examples. On average, the number of non-dominated solutions 

from the hybrid algorithm was 30% greater than the best-performing standalone algorithm, indicating 

its higher capability in covering the Pareto front space and maintaining diversity among optimal 

solutions. From the perspective of total cost, the hybrid algorithm achieved the lowest operational cost 

in all examples. This cost reduction, which exceeded 3% in some instances compared to other 

algorithms, reflects improved efficiency in the therapeutic supply chain regarding resource allocation, 

transportation, and therapy production. In the environmental pollution indicator, the results show a 

significant reduction in pollutant emissions and waste for the hybrid algorithm. On average, this 

algorithm achieved approximately a 2 to 3% reduction in pollution compared to the best standalone 

algorithm, confirming the effective integration of sustainability considerations in the optimization 

process. Concerning social impact, which includes indicators such as job creation, treatment 

accessibility, and treatment equity, the hybrid algorithm succeeded in obtaining the highest social score. 

This result indicates that its proposed solutions not only are economical but also significantly contribute 

to improving the social dimensions of the healthcare system. Regarding computation time, the 

proposed hybrid algorithm reached the optimal solution faster than the standalone algorithms. This time 

reduction, especially in larger-scale problems, constitutes a significant competitive advantage for 

practical applications where decision-making speed in healthcare networks is crucial. 

In summary, the proposed hybrid algorithm demonstrated superior performance across all 

evaluation metrics—solution quality, environmental sustainability, economic cost, social dimensions, 

and computational efficiency—compared to the base algorithms. These results clearly indicate the 

efficacy and superiority of the integrated method developed in this research, showing that the structured 

combination of NSGA-IV, ε-MOEA, and SMS-EMOA can provide a reliable and optimal strategy for 

designing advanced therapeutic supply chains. 

4.1) Statistical Significance Evaluation of the Results 

To ensure that the improvements achieved by the proposed hybrid algorithm over the standalone 

algorithms were not merely due to random fluctuations, supplementary statistical tests were performed 

on the quantitative results. At this stage, two main standard indicators—Hypervolume (HV) and Inverted 

Generational Distance (IGD), which represent the quality and diversity of the Pareto front—were used 
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as the basis for comparison. First, a one-way Analysis of Variance (ANOVA) was conducted to compare 

the means. For greater assurance and to account for potential non-normality of the data, the non-

parametric Kruskal–Wallis test was also employed (Rodriguez et al., 2025). 

Table 7) Statistical Test Results for Algorithm Comparison 

Algorithm HV (Mean ± Std Dev) IGD (Mean ± Std Dev) p-value (vs. Proposed Hybrid) 

NSGA-IV 0.642 ± 0.018 0.037 ± 0.005 0.021 

SMS-EMOA 0.655 ± 0.015 0.035 ± 0.004 0.034 

ε-MOEA 0.648 ± 0.017 0.036 ± 0.004 0.029 

Proposed Hybrid 0.672 ± 0.015 0.034 ± 0.005 – 

Based on the results in Table 7, the proposed hybrid algorithm demonstrated better performance in 

both HV and IGD indicators compared to the standalone algorithms. The obtained p-values for the 

comparison between the hybrid algorithm and the others are less than 0.05, indicating that the 

differences are statistically significant at a 95% confidence level. These results were confirmed by both 

the ANOVA and Kruskal–Wallis tests. 

The mean HV indicator for the hybrid algorithm is about 2 to 3% higher than that of the standalone 

algorithms, and the IGD indicator is also lower compared to the other methods, indicating higher 

accuracy in approximating the Pareto front. Therefore, it can be concluded that the observed 

improvements are not coincidental but stem from the hybrid design of the proposed algorithm. This 

scientifically and statistically supports the claim of the hybrid algorithm's superiority over the standalone 

algorithms. 

4.2) Qualitative Performance Evaluation of Algorithms 

A systematic evaluation of multi-objective criteria plays a central role in the development and 

improvement of optimization algorithms. This comprehensive evaluation provides a standard 

framework for measuring solution quality and comparing the performance of different algorithms 

(Gregory & Pourjavad, 2020). Multi-objective criteria enable the precise analysis of an algorithm's 

ability to approximate the optimal Pareto front and create a scientific basis for selecting the most suitable 

method in practical applications. In this paper, the Generational Distance (GD) and Error Ratio (ER) 

criteria have been examined. 

4.2.1) Generational Distance (GD) 

Generational Distance acts as one of the key indicators in evaluating the performance of multi-objective 

algorithms. This quantitative metric assesses the convergence accuracy of an algorithm by calculating 

the deviation of the found Pareto front from the true optimal front.This metric is represented by Equation 

(25):  

GD = √
1

|PFtrue|
∑ di

2|PFtrue|
i=1                                                                                                           (25)                                        

In this equation, di represents the Euclidean distance of each solution on the true Pareto front to its 

nearest neighbor on the obtained Pareto front. The value of this index falls within the range of non-

negative real numbers. A GD value closer to zero indicates higher convergence quality and closer 

proximity of the found front to the true optimal front. Conversely, larger values indicate a greater 

deviation from the desired front. 
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Figure 1) Comparison of Generational Distance Results 

 

 

The evaluation results of the four multi-objective optimization algorithms in Figure 1 show that the 

proposed hybrid algorithm, with an average GD of 0.13, had the best overall performance among the 

methods studied. This algorithm demonstrated significant superiority, particularly in the third function 

with a value of 0.08, indicating its high capability in solving problems with specific characteristics. The 

NSGA-IV algorithm, with an average of 0.17, ranked second. Although this algorithm had weaker 

results in the first and second functions, its relatively favorable performance in the third function, with 

a value of 0.12, indicates its capabilities under certain specific conditions. The SMS-EMOA algorithm, 

with an average of 0.16, showed moderate performance and did not achieve the best result in any of the 

test functions. In contrast, the ε-MOEA algorithm, with an average of 0.18, recorded the weakest results. 

However, its acceptable performance in the third function, with a value of 0.11, suggests that even 

algorithms with weaker overall performance can deliver favorable results under specific conditions. 

These results indicate that the proposed hybrid approach, by integrating the advantages of the base 

algorithms, has achieved a significant improvement in the Generational Distance metric. The 33% 

improvement of this algorithm in the third function compared to the second-best algorithm is evidence 

of this claim. On the other hand, the difference in algorithm performance across different functions 

emphasizes that selecting the optimal method should be done considering the specific features of each 

problem. 

4.2.2) Error Ratio (ER) 

In the field of multi-objective optimization, the Error Ratio metric is used as one of the key indicators 

for evaluating the quality of generated solutions. This quantitative measure assesses the deviation of 

approximate solution sets from the true optimal front.The mathematical relation of the Error Ratio is 

expressed as Equation (26): 

ER =
Area between the true Pareto front and the approximation set

Total area of the true Pareto front
                                                                              (26) 

In calculating the ER index, the numerator represents the degree of mismatch between the found 

solution set and the absolute optimal front. This area is defined as the space between the curve of 

approximate solutions and the ideal front, indicating regions needing improvement in the solutions. The 

denominator represents the complete extent of the true Pareto front, encompassing all possible optimal 

states. This value serves as the baseline and benchmark for measuring solution quality. Values close to 

zero in this index indicate that the distribution of solutions well covers the optimal front and the 

algorithm in question has been able to balance the optimization of conflicting objectives. 
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Figure 2) Comparison of Error Ratio Results 

 

The results presented in Figure 2 indicate that the proposed hybrid algorithm demonstrated the best 

overall performance with an average ER of 0.123. This algorithm showed significant superiority, 

particularly in the first function, achieving an ER of 0.09. The NSGA-IV algorithm ranked second with 

an average ER of 0.16. The performance of this algorithm in the third function (ER = 0.14) was evaluated 

as relatively favorable. The SMS-EMOA demonstrated average performance with an average ER of 

0.16. In contrast, ε-MOEA recorded the weakest results with an average ER of 0.163, although it 

exhibited acceptable performance in the third function (ER = 0.13). The results show that the proposed 

hybrid approach, by integrating the advantages of the base algorithms, achieved a 30.7% improvement 

in the first function compared to NSGA-IV. The superiority of this algorithm across all functions 

indicates its high capability in solving various types of problems. The increase in ER for the second 

function across all algorithms confirms the challenging nature of this function. The difference in 

algorithm performance across different functions supports the point that selecting the optimal method 

should be done according to the characteristics of the problem. 

4.3) Sensitivity Analysis 

To conduct a more comprehensive evaluation of the proposed approach's performance and increase 

confidence in its generalizability, diverse sensitivity analyses were performed in this research. The 

primary objective of these analyses was to examine the stability and robustness of the model and the 

hybrid algorithm against changes in problem conditions and computational settings. Since both the 

design of therapeutic networks and the execution of metaheuristic algorithms are influenced by 

parameter selection, sensitivity analysis was performed at two levels: first, on the main model 

parameters (such as center capacities, vehicle capacities, and demand levels), and second, on the key 

algorithm parameters (such as population size, mutation rate, and selection rate). This two-level 

approach enables the simultaneous examination of modeling stability and computational robustness of 

the algorithm, providing stronger evidence of the practical efficiency of the proposed method. 

4.3.1) Sensitivity Analysis on Model Parameters 

To investigate the stability and robustness of the proposed hybrid algorithm's performance in the face 

of changes to key model parameters, a series of sensitivity analyses were conducted. In these analyses, 

the impact of changes in important inputs on the quality of the provided solutions was evaluated using 

the Generational Distance (GD) and Error Ratio (ER) metrics. Sensitivity analysis was performed on 

the main variables of production capacity at treatment centers, the capacity of vehicles for transporting 

blood and medical staff, and the level of treatment demand at various centers (including emergency 

demand due to disease relapse). In each experiment, one main parameter was changed at three levels 

(20% decrease, base value, 20% increase), while other parameters remained constant. Then, for each 

scenario, the proposed hybrid algorithm was executed, and the values of GD and ER were recorded as 

metrics for Pareto front quality. 
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Figure 3) Sensitivity Analysis on Main Variables: Production Capacity, Vehicle Capacity, and 

Demand Level 

 

 

The sensitivity evaluation results presented in Figure 3 indicate that changes in production capacity 

have a significant impact on the performance of the optimization algorithms. When production capacity 

increases by 20%, a noticeable improvement is observed in all evaluation metrics. Particularly, in the 

first function, the GD value decreased from 0.11 in the base state to 0.09, indicating better algorithm 

convergence under increased capacity conditions. Conversely, a 20% decrease in production capacity 

led to increased GD and ER values across all functions, indicating the system's sensitivity to production 

constraints. 

Changes in vehicle capacity also had considerable effects on system performance. Increased 

transportation capacity led to improved evaluation metrics across all functions, such that in the third 

function, the GD value decreased from 0.08 in the base state to 0.05. These improvements indicate the 

vital importance of the transportation system in overall process efficiency. On the other hand, decreasing 

vehicle capacity had a more severe negative impact than decreasing production capacity, emphasizing 

the special importance of this parameter in system design. 

In examining the impact of changes in treatment demand level, which specifically includes 

emergency demand due to disease relapse, the results indicate that the system is more vulnerable to 

increase in demand than to decrease. A 20% increase in emergency demand—indicating a higher 

severity of disease relapse (e.g., an increase in patients requiring post-relapse care centers)—led to a 

significant increase in GD values (from 0.13 to 0.16) and ER values (from 0.12 to 0.15) across all 

functions. This increase is due to greater complexity in allocating logistical resources and locating post-

relapse care centers, which raises the need for backup vehicles and additional infrastructure. For 

example, in the increased demand scenario, the total supply chain cost increased by 4.6% (from 975 to 

1020 thousand dollars) and environmental pollution increased by 4.2% (from 1,440 to 1,500 kg CO2), 

while the social impact score improved by 10.5% (from 95 to 105) due to the establishment of more 

care centers in high-risk areas. In contrast, a 20% decrease in emergency demand resulted in a more 

limited impact, with a 3.6% reduction in cost (to 940 thousand dollars) and a 4.2% reduction in 

environmental pollution (to 1,380 kg CO2). However, there was a 10.5% decrease in the social score 

(to 85) due to fewer active centers. This asymmetry in the system's response to demand changes indicates 

the high sensitivity of the supply chain to disease relapse, directing network design toward greater 

flexibility and dynamic resource allocation. 
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This analysis confirms that emergency demand, due to disease relapse, is a key operational factor 

in the model, rather than merely a theoretical addition. Increased emergency demand compels managers 

to enhance logistical capacities (such as backup vehicles) and increase the number of post-relapse care 

centers, which can be achieved through investment in local infrastructure or the use of mobile units. 

These findings demonstrate the importance of integrating clinical considerations such as disease relapse 

in supply chain design, distinguishing the proposed model from traditional ones. Overall, the second 

function demonstrated the greatest sensitivity to parameter changes across all scenarios, likely due to 

the inherent complexity of this function. 

4.3.2) Sensitivity Analysis on Algorithm Parameters 

To increase confidence in the generalizability and robustness of the proposed hybrid algorithm, a 

sensitivity analysis was performed on the range of its key parameters. These parameters include 

Population Size, Mutation Rate, and Selection Rate, which have the greatest impact on the convergence 

process and Pareto front quality. In each experiment, only one parameter was changed while other 

parameters remained fixed at their base values. Algorithm performance was evaluated using two 

standard indicators: Hypervolume (HV) and Inverted Generational Distance (IGD). 

Figure 4) Sensitivity Analysis of Mutation Rate 

Mutation Rate 

 

Figure 5) Sensitivity Analysis on Selection Method 

Selection Method 

Figure 6) Sensitivity Analysis on Population Size 



23                                                                                                Engineering Management and Soft Computing, Vol. 12, no.1, 2026 

 

 

Population Size 

 

The results of the sensitivity analysis of the proposed algorithm to changes in key parameters are 

presented in Figures 4, 5, and 6 for mutation rate, selection method, and population size, respectively. 

As observed in the figures, when the population size increased from 80 to 120, the HV indicator showed 

significant improvement and the IGD indicator decreased, indicating increased diversity of the Pareto 

front and convergence accuracy of the algorithm. The examination of the mutation rate showed that the 

base value (0.10) created the best balance between diversity and convergence, while lower rates caused 

slower convergence, and higher rates led to fluctuations in solution quality. Finally, the analysis of the 

selection rate showed that a value of 0.7 provided optimal performance, and changes to 0.6 or 0.8 did 

not create a significant change in the HV and IGD indicators. In summary, these results indicate that the 

proposed hybrid algorithm is stable and resistant to conventional changes in parameters. This 

characteristic not only creates greater confidence in the computational results but also indicates the 

algorithm's generalizability to real-world problems and diverse scenarios in CAR-T supply chain design. 

4.4) Managerial and Practical Implications 

The results of this research can have important implications for therapeutic supply chain managers, 

healthcare policymakers, and strategic decision-makers in hospitals and medical centers. Designing a 

sustainable, multi-objective supply chain for advanced therapies, such as CAR-T, requires informed 

decision-making based on precise quantitative analyses. The model presented in this research and the 

proposed algorithm provide a powerful tool to support such decisions. 

       The most important managerial and executive applications of the present research include: 

• Support for Multi-Objective Decision-Making: Managers can use the model's results to 

make decisions that balance the three key objectives (cost, environment, and social 

satisfaction), without neglecting any one of these goals. 

• Designing a Resilient Therapy Network: The proposed algorithm's structure, by 

considering uncertainty scenarios, helps managers design a flexible network resilient to 

disruptions such as sudden demand surges or the closure of a treatment center. 

• Optimal Location and Resource Allocation: The model's results can be used for 

decision-making regarding the optimal location of treatment centers, production capacity, 

and allocation of human and logistical resources. 

• Dynamic Monitoring and the Control of Therapy Network Performance: The multi-

front output of the proposed algorithm allows managers to have several optimal scenarios 

at their disposal and make decisions based on daily priorities. 

• Creating a Basis for Implementing Sustainable Policies in Novel Therapies: The multi-

criteria approach of the model provides conditions for decision-makers to have a 

comprehensive view of the social and environmental impacts of their decisions, rather than 

focusing solely on cost. 

In addition to the above general applications, the quantitative results of the hybrid algorithm have 

tangible practical implications for healthcare decision-makers. For example, an average 3% reduction 

in total cost (compared to base algorithms) could mean significant savings in the therapy budget. In a 



A Novel Hybrid Algorithm for Designing a Sustainable Supply Chain of CAR-T Therapy in a Multi-Objective Mode Considering 

Disease Relapse                                                                                                                                              24  

 

 

real network with an annual demand of 1000 patients, this reduction could equate to freeing up a budget 

of approximately $500,000 to $1,000,000 (based on an average CAR-T therapy cost of about $400,000), 

which could be used to increase treatment access for low-income patients or expand insurance coverage. 

This not only enhances treatment equity but could also increase the success rate of therapy in deprived 

communities, where access to advanced treatments is often limited. On the other hand, a 2 to 3% 

reduction in environmental pollution (including greenhouse gas emissions and biological waste) has 

important policy implications. This reduction can help policymakers implement sustainability standards 

in the therapy supply chain, such as integrating electric vehicles or optimizing transportation routes to 

reduce distance traveled. At the national level, this improvement could contribute to achieving the UN 

Sustainable Development Goals and even lead to receiving carbon credits or government subsidies for 

treatment centers. For hospital managers, this reduction could mean lower costs associated with waste 

management (which often constitutes 1 to 2% of the budget) and improved organizational reputation as 

a green entity, ultimately attracting more investment in novel therapies such as CAR-T. 

Finally, the improvement in social indicators (such as greater job creation) can translate into more 

sustainable hiring policies, where the proposed algorithm suggests center locations in a way that 

increases job opportunities in rural or deprived areas. This approach not only increases supply chain 

resilience but also helps reduce social inequalities in access to healthcare. Managers can use this model 

and algorithm to optimize other healthcare supply chains, such as vaccine or biologic drug supply chains, 

to enhance efficiency and sustainability in broader health domains. Managers can use these insights to 

negotiate with key stakeholders, such as governments or pharmaceutical companies, to gain more 

support for implementing these models. 

5) Conclusion 

This study presents a multi-objective mathematical model for designing a Chimeric Antigen Receptor 

T-cell (CAR-T) therapy supply chain, which not only incorporates cost considerations but also 

emphasizes environmental and social dimensions to establish a sustainable equilibrium among these 

three critical pillars. Given the problem's complexity and large scale, a novel hybrid metaheuristic 

algorithm was developed, adaptively integrating NSGA-IV, ε-MOEA, and SMS-EMOA. This adaptive 

approach led to significant improvements in convergence, diversity, and the quality of the Pareto front. 

Numerical results and statistical analyses confirmed the algorithm's superior performance over baseline 

algorithms in both quantitative metrics—achieving a 3% reduction in total cost, a 2 to 3% decrease in 

environmental pollution, and enhanced social impact—and qualitative metrics, such as generational 

distance and error ratio. Sensitivity analysis demonstrated the high robustness of the proposed algorithm 

against standard parameter variations, including emergency demand surges due to disease relapse; 

however, limited performance degradation was observed under extreme fluctuations in production 

capacity or demand. From a theoretical perspective, this research makes a substantial contribution to the 

multi-objective optimization literature. The proposed hybrid algorithm, by synergistically combining 

the strengths of NSGA-IV (for Pareto front diversity), ε-MOEA (for constraint handling), and SMS-

EMOA (for convergence enhancement), introduces an innovative approach to metaheuristic design. This 

adaptive integration, reinforced by dynamic selection mechanisms and automatic parameter tuning, is 

applicable not only to CAR-T supply chain problems but also to other complex, large-scale multi-

objective optimization problems with conflicting objectives. This advancement positions the proposed 

algorithm as a general-purpose tool for multi-objective optimization, extending beyond the specific 

application of this study. Its potential for extension to other healthcare supply chains and adaptation to 

uncertainty frameworks further amplifies its significance in broader domains. From a practical 

standpoint, these improvements have tangible implications for healthcare systems. For instance, the 3% 

cost savings could free up resources to improve access to expensive CAR-T therapies for low-income 

patients, while the 2-3% reduction in environmental pollution facilitates compliance with sustainability 

standards and potentially enables access to carbon credits. The sensitivity analysis on emergency 

demand due to relapse highlighted its role as a key driver pushing network design towards greater 

flexibility, underscoring its practical importance in CAR-T supply chains. By providing an innovative 
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and applicable framework, this study offers an effective solution for designing and optimizing supply 

chains for advanced therapies within the complex and sensitive context of personalized healthcare. This 

framework aids managers and policymakers in moving towards a more sustainable and equitable health 

system. 

5.1. Research Limitations 

Despite its innovations, this study has limitations that may affect the generalizability of its results. First, 

the proposed model employs a deterministic approach, while inherent uncertainties in CAR-T therapy 

supply chains—such as sudden fluctuations in emergency demand due to disease relapse or logistical 

disruptions—are not explicitly modeled. This deterministic assumption may limit the model's ability to 

predict real-world scenarios under high uncertainty. Second, the assumption of linear environmental 

emissions (e.g., greenhouse gases and bio-waste) within the model may overlook real-world 

complexities, such as non-linear effects arising from economies of scale or specific operational 

conditions (e.g., variations in transportation routes). Third, due to the novelty of CAR-T therapy and 

limited access to real-world clinical and industrial data, synthetically generated data using controlled 

random methods was utilized. Although this data was calibrated based on reputable sources and realistic 

geographical intervals, the lack of real data may limit the generalizability of the results in certain 

practical scenarios. Fourth, the conducted sensitivity analysis was confined to key parameters such as 

production capacity, vehicle capacity, and emergency relapse demand, and did not investigate the impact 

of external factors such as regulatory policies or technological changes. 

5.2. Future Research Directions 

To address the aforementioned limitations, future research is recommended. Stochastic programming 

models should be developed to account for dynamic uncertainties, such as sudden changes in emergency 

relapse demand or logistical disruptions. For example, probabilistic models could represent emergency 

demand as probability distributions to provide greater flexibility against fluctuations. Furthermore, 

robust optimization techniques could be employed to design networks resilient to worst-case uncertainty 

scenarios, such as treatment center closures or vehicle shortages. Additionally, scenario-based validation 

using real-world data from treatment centers or pharmaceutical companies would enhance the model's 

generalizability, particularly for scenarios simulating emergency relapse demand. Integrating emerging 

technologies, such as AI for predicting emergency demand and Blockchain for enhancing transparency 

and traceability within the supply chain, could also improve model resilience. Finally, investigating the 

non-linear effects of environmental emissions, using dynamic or non-linear models, could increase the 

accuracy of environmental impact predictions and support sustainable policymaking. These suggestions 

can enrich the model's policy implications and assist decision-makers in the practical implementation of 

the proposed solutions. 
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