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This study investigates the sustainable supply chain network design
problem in the healthcare sector, where patients with cancer are treated
using CAR-T cell therapy. To better reflect real-world conditions, the
possibility of disease relapse is incorporated into the problem
formulation. The problem is modeled as a multi-objective mixed-integer
programming (MIP) problem, aiming to minimize total costs, reduce
environmental impacts, and maximize social satisfaction and
accessibility. Given the NP-hard nature of the problem, a novel hybrid
metaheuristic algorithm is developed to solve large-scale instances. The
proposed algorithm is a structured integration of three evolutionary
methods: Non-dominated Sorting Genetic Algorithm IV (NSGA-IV) for
preserving diversity and Pareto front coverage, S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA) for enhancing
precision and hypervolume expansion, and the Epsilon-dominance
Evolutionary Multi-objective Algorithm (e-MOEA) for rapid initial
convergence. These three were selected as their combined strengths
ensure a balanced trade-off between exploration, convergence speed,
and final accuracy, which cannot be achieved by any of them
individually. The proposed hybrid algorithm employs a two-stage
selection mechanism, an adaptive mutation strategy, and a dynamic
external archive to generate high-quality solutions across the Pareto
front. Numerical experiments across different problem scales confirm its
superiority, yielding on average 30% more non-dominated solutions, a
3% reduction in costs, and a 2 to 3% decrease in environmental impacts
compared to single algorithms. The findings demonstrate this hybrid
approach potential to enhance both strategic and operational decision-
making in resilient healthcare delivery networks.
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1) Introduction

Recent years have witnessed transformative advancements in personalized medicine and
immunotherapy, fundamentally reshaping the therapeutic landscape for complex, refractory, and
relapsing diseases. One of the most prominent achievements in this field is Chimeric Antigen Receptor
T-cell (CAR-T) therapy. This approach harnesses the genetic engineering of a patient's own immune
cells to confer a remarkable ability to precisely target and eradicate cancerous cells, demonstrating
significant success, particularly in relapsed hematological malignancies (Jacoby, 2019). However, the
CAR-T therapy supply chain is among the most complex structures in healthcare systems. It
encompasses a series of sensitive and interlinked stages: the collection of viable cells, genetic
processing, controlled-temperature transportation, secure storage, and ultimate reinfusion into the
patient. This process is not only highly time-sensitive and delicate but also demands meticulous
coordination of infrastructure across the entire supply network (Bray et al., 2024). The complexity of
this chain escalates significantly when a patient experiences disease relapse following initial treatment,
as decision-making in such scenarios must be rapid, precise, and sustainable, all while operating within
constrained therapeutic resources.

Concurrently, modern healthcare systems face increasing pressure to address the triple dimensions
of sustainability. This implies that the design of therapeutic networks must not focus solely on cost or
time efficiency; it is imperative to also integrate environmental impacts (such as energy consumption
and bio-waste generation) and social consequences (including equitable access to treatment and job
creation) into the decision-making process. Attending to these dimensions, particularly for advanced
therapies such as CAR-T, constitutes a strategic imperative.

To bridge clinical realities with mathematical modeling, it is essential to clarify how disease relapse
scenarios are translated into supply chain design variables and constraints. In practice, relapse generates
immediate and additional demand, necessitating rapid resource allocation, the deployment of backup
transportation, and the establishment of post-relapse care centers. In the proposed model, these clinical
dimensions are represented through parameters for demand at post-relapse care centers, constraints on
the capacity of vehicles and mobile medical units, and the location-allocation decisions for these
facilities. Furthermore, the time sensitivity inherent in relapse is incorporated by imposing stringent time
constraints on manufacturing, transportation, and treatment administration. Therefore, real-world
therapeutic requirements are integrated into the model as quantitative variables and constraints, ensuring
that the proposed optimization framework is grounded in operational imperatives rather than being a
purely abstract theoretical construct.

Simultaneously, formulating a multi-objective mathematical model that combines these clinical
realities with economic, environmental, and social criteria results in a complex problem characterized
by conflicting objectives and a non-linear solution space. Under such conditions, classical optimization
methods are insufficient, necessitating the use of metaheuristic algorithms (Javadi Gargari et al., 2021).
In response to this need, the present study aims to develop a multi-objective mathematical model for the
sustainable design of a CAR-T therapy supply chain under conditions of disease relapse. Furthermore,
it introduces a novel hybrid algorithm based on the integration of NSGA-IV, e-MOEA, and SMS-
EMOA, designed to effectively balance convergence speed, solution diversity, and final Pareto front
precision.

2) Literature Review

Papathanasiou et al. (2020) discuss the production and supply chain challenges of CAR T-Cell therapy,
including increasing demand, complex product and process nature, and intricate logistics. Their research
focuses specifically on commercial supply chain challenges and presents risks associated with other
contributing factors. Karakostas et al. (2020) designed a patient-centric, decentralized supply chain
model for Chimeric T-Cell therapy, formulating it as a Mixed-Integer Linear Programming (MILP)
model. Hospitals were considered coordinators, and local clinics were designated as treatment
administration centers. Jemai et al. (2020) integrated environmental concepts into supply chain
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management to form a dynamic green supply chain management model. They implemented this concept
for blood platelets, a highly perishable product. Their primary objective was to minimize redundancies
in blood facility location allocation and create an efficient network for blood platelet collection and
distribution. Lam et al. (2021) proposed a discrete-event simulation model to compare the operational
feasibility and manufacturing costs of CAR T products between centralized and decentralized settings.
They evaluated this simulation regarding resource allocation, cost per treatment, and system resilience
level using a hypothetical UK system with three demand levels: low, predicted, and high. Their results
indicated that individual facilities in decentralized systems could share facility costs at high treatment
volumes. Goodarzian et al. (2021) designed a model to address gaps in the pharmaceutical industry
mathematical models, incorporating the production-distribution-inventory-allocation-location
framework in a sustainable medical supply chain. They also considered medicines for COVID-19
patients and production/delivery periods according to their perishability, designing a multi-objective,
multi-echelon, multi-product, multi-period model for their sustainable supply chain network. Torrado
and Barbosa (2022) conducted a review of sustainability in blood supply chains. They examined articles
published in the past 10 years, categorizing their analysis into three distinct groups: the description of
stages, strategic-tactical and strategic-operational perspectives, and the examination of sustainability
dimensions. They pursued three objectives: reviewing literature related to sustainability goals,
addressing unanswered research questions, and identifying challenges related to modeling, uncertainty,
and risk. Lam et al. (2022) proposed a framework for commercializing autologous cell therapies and,
using a illustrative UK example, demonstrated the impact of rapid regulatory approval on capacity
planning and investment decisions. They proposed a MILP approach to better understand capacity and
portfolio planning decisions for autologous cell therapies. Mansur et al. (2023) considered a multi-level
MILP model for a sustainable blood supply chain. Aiming to increase profit by considering multiple
blood groups, they accounted for total revenue versus total costs, including purchase, transportation,
production, blood bag shelf-life, and carbon emission. They applied their model to a real-world case
study. Shayannia (2023) designed a mathematical model incorporating sustainability and a new political
sustainability objective. Focusing on an agile supply chain strategy, they considered a four-echelon
network of supplier, wholesaler, retailer, and customer. Fallahi et al. (2024) developed a sustainable
supply chain network for convalescent plasma during the COVID-19 pandemic. They presented a hybrid
multi-objective optimization model to minimize total carbon emissions alongside supply chain costs.
Kargar et al. (2024) developed an agent-based COVID-19 simulation model to record disease
transmission and predict the number of susceptible individuals and infections. They then created a
sustainable vaccine supply chain (VSC) considering greenhouse gas impact.

Rekabi et al. (2024) solved a responsive, sustainable, and resilient blood supply chain network
considering density using a regression method. They presented an innovative multi-period, multi-
objective nonlinear mixed-integer model for an efficient and responsive Green Blood Supply Chain
(GBSC) incorporating resilience measures. Ala et al. (2024) designed a blood supply chain network with
lateral transportation for robust probabilistic optimization. Their objectives included minimizing fixed
and temporary facility costs, blood product transfer costs, and shortage levels. Dada et al. (2025)
investigated the challenges of the essential medicine supply chain in the United States during the
COVID-19 pandemic. Findings revealed that flaws in demand forecasting systems, inventory
management, and supply chain transparency led to drug shortages and increased costs. This research
was based on the analysis of real crisis-period data and interviews with key stakeholders. The results
indicated that novel technologies, such as Artificial Intelligence (Al) and Blockchain, could significantly
improve drug supply chain resilience. Al, through accurate demand forecasting, and Blockchain, by
creating transparency and traceability in the supply chain, were among the solutions proposed in the
study. Camacho-Villalon et al. (2025) presented the METAFOR software framework which uses auto-
configuration tools to automatically generate hybrid continuous optimization algorithms. Their results
show that these automatically generated hybrid algorithms generally outperform single-method, human-
knowledge-based algorithms. Herdianto et al. (2025) presented a hybrid model for the Capacitated
Vehicle Routing Problem (CVRP) based on Graph Neural Networks (GNN), which reduces the search
space guided by a Large Neighborhood Search (LNS) operator. This method, without requiring
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blood and vaccine supply chains—valuable for sustainability, location, or inventory management—
they do not fully address the stochastic conditions and highly time-sensitive constraints of CAR-T
therapy. In blood or vaccine chains, demand is often managed collectively over predictable horizons,
while in CAR-T therapy, each patient has a unique treatment process where even minor delays can
impact clinical efficacy. Furthermore, the occurrence of relapse leads to immediate and uncertain
demand surges that are not well-represented in traditional models.

Moreover, although some studies have used metaheuristic approaches to solve complex problems
in therapeutic chains, the combined application of advanced algorithms, particularly under relapse-
sensitive conditions, has not been reported. Recent works on hybrid metaheuristics and robust
optimization in healthcare supply chains also show that single-stage approaches cannot simultaneously
meet the needs for solution diversity, convergence speed, and resilience to uncertainty. This gap is
particularly evident in CAR-T supply chain design, where existing models primarily focus either on
cost/location dimensions or on deterministic constraints. In contrast, relapse conditions require the
simultaneous consideration of demand dynamics, stringent time constraints, and the triple-bottom-line
of sustainability. Accordingly, this study aims to fill this void by presenting a multi-objective
optimization model coupled with an advanced hybrid metaheuristic algorithm capable of addressing the
real-world needs of the CAR-T treatment chain under uncertainty and relapse. In response to these gaps,
the present study offers two key innovations:

1. Development of a dedicated multi-objective modeling framework specifically designed for
CAR-T therapy supply chain design under relapse conditions, incorporating sustainability
criteria.

2. Introduction of a novel, advanced hybrid metaheuristic algorithm that leverages a three-
stage integration of NSGA-IV, e-MOEA, and SMS-EMOA. Employing the Taguchi
experimental design method for systematic parameter tuning, this algorithm uniquely
ensures three key features simultaneously: high Pareto front quality, solution diversity, and
convergence speed for complex therapeutic problems.

This novel approach not only addresses theoretical gaps in the literature but also provides practical
solutions for optimizing the supply chain of advanced cell therapies under real-world conditions. The
unique combination of advanced mathematical modeling with hybrid optimization algorithms enables
more efficient decision-making in the face of dynamic healthcare system challenges.

3) Methodology

Chimeric Antigen Receptor T-cell (CAR-T) therapy is a highly personalized and time-sensitive
treatment that requires a precise and coordinated therapeutic supply chain. The process begins with a
patient visiting a specialized hospital for initial examination and eligibility confirmation. Upon approval,
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two blood samples are collected from the patient via leukapheresis. These samples are subsequently
transported by specialized blood transport vehicles, subject to scheduling and capacity constraints, to
therapy manufacturing centers. Each vehicle must deliver the samples within a specified time window
and geographical radius, provided that the total input volume to any center does not exceed its
operational capacity (Hayden et al., 2022). The activation of a manufacturing center is determined by
its operational capacity, the spatial distribution of demand, and its proximity to hospitals and infusion
sites. Each active center is allocated to a specific set of hospitals and infusion sites to maximize the
efficiency of the manufacturing and delivery process.

Following the completion of manufacturing and final approval, the produced therapy is transported
to the infusion site by a mobile medical unit accompanied by a specialist physician. Infusion sites are
selected based on proximity to the manufacturing center and transportation constraints. If the patient
chooses their residence as the infusion site, a mobile unit is dispatched to their home. Alternatively, if a
local clinic is preferred, vehicle allocation is based on availability and the aggregated demand for that
time period. To ensure timely delivery, only one mobile unit is assigned to each infusion site per service
period. To cover patients in case of disease relapse, a backup vehicle is allocated to each infusion site.
These vehicles are responsible for transporting relapsed patients to post-relapse care centers. The
allocation of these care centers is based on demand patterns at each infusion site. The entire supply chain
structure is designed to meet all therapeutic demands, ensuring that manufacturing, delivery, and
infusion processes occur within clinically acceptable timeframes. Furthermore, each infusion site is
linked to a dedicated post-relapse care center to guarantee comprehensive treatment services and follow-
up.

In this paper, the conceptual model structure was first designed according to the characteristics of
CAR-T therapy. Subsequently, a deterministic optimization model was developed for decision-making
across various domains, including facility location, inventory control, production planning, and
transportation routing (Kargar et al., 2024). Although the model is formulated with deterministic
assumptions, given the inherently uncertain nature of the treatment environment, it can be extended to
robust or fuzzy forms. Input data was generated using random number generation methods based on
hypothetical yet realistic scenarios, as real-world data is unavailable due to the novelty of the treatment.
The definitions of indices, parameters, and model variables are presented in Table 2. To verify the
validity and efficiency of the proposed model, it was evaluated using the proposed hybrid metaheuristic
algorithm. This algorithm was developed by hierarchically integrating three approaches: NSGA-IV, -
MOEA, and SMS-EMOA. The computational implementation was performed using the Python
programming language (version 3.9), utilizing specialized libraries including DEAP and NumPy.

3.1) Mathematical Modeing
The assumptions of the mathematical model are summarized as follows:
e Intra-center production scheduling of the therapy is not considered.
e All blood samples used are fresh.
e Pre-infusion chemotherapy is administered by mobile units or clinics.
e Each clinic is dependent on only one manufacturing center and one hospital.
e Each infusion site (home or clinic) receives service only once per period.
e Mobile medical units are dispatched from manufacturing centers and return after service.
e Transportation of relapsed patients is performed by dedicated ambulances.
e Post-relapse care centers have specified capacities and fixed stay durations.
o Two units of blood from the patient are required for each CAR-T therapy unit.
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Table 2 )Definition of Indices, Parameters and Variables of the Mathematical Model

Symbol Description
H Set of hospitals for receiving blood, h € H
B Set of hospitals for transfusion, b € B
K Set of clinics for transfusion, k € K
P Set of patients’ homes for transfusion, p € P
F Set of T-cell production centers, f € F
S Set of post-treatment care centers (SOS), s € S
T Set of courses, t € T
\' Set of cars for transporting blood, v € V
M Set of cars for transporting people or sending produced T-cells, m € M
W = {B,P,K} Set of hospital, clinic, and patient collections for T-cell transfusion, w € W
Parameter Description
ransportation cost per unit distance by vehicle v in period t.

cxX, Transportat tp t distance by vehicl period t
DX " Distance between centers h and f.
cz,, Transportation cost per unit distance by vehicle m in period t.
DZ,, Distance between centers f and w.
DG, Distance between centers w and s.
FRf Fixed cost of establishing production center f.
FL, Fixed cost of establishing SOS center s.
CSwt Service cost at center w in period t.
COM Service cost per patient at SOS center s in period t.
Pth Probability of patient relapse after treatment at center w in period t.

. Environmental pollution per unit distance traveled by vehicle m.
/1V Environmental pollution per unit distance traveled by vehicle v.
Vs Environmental pollution per unit of production at center f.
Vs Environmental pollution per patient post-relapse care at center s.
¢f Personnel required per unit of production at center f.
¢S Personnel required per patient post-relapse care at center s.
CE r Hiring cost per personnel per unit of production at center f.
CE s Hiring cost per personnel per patient post-relapse care at center s.
cv, Capacity of vehicle v for blood transportation.
CM " Capacity of vehicle m for transportation between centers.
BW Maximum capacity for post-relapse patient care at SOS center s.
CcG i Admission capacity of hospital h for blood sample collection.
CPf T-cell production capacity at production center f.
DBwt Number of patients at center w in period t.
Dth Number of patients experiencing relapse after treatment at centers w in period t.
TR ot Transportation time between centers h and f by vehicle v in period t.
T wam, Transportation time between centers f and w by vehicle m in period t.



A Novel Hybrid Algorithm for Designing a Sustainable Supply Chain of CAR-T Therapy in a Multi-Objective Mode Considering

Disease Relapse

8

SK,
1s,,
TUW[

Positive Variables
CA_ f
CT\/V}‘I‘I[

Binary Variables

thvt
E

Sfwmt

Integer Variables

Y,
X

hfvt

GX
VA

fwmt

wsmt

T-cell production time at center f in period t.
Service time for patient injection at center w in period t.

Maximum allowable time for T-cell injection to patients at center w in period t.

Description
Time to complete T-cell production at center f in period t.

Time to complete T-cell injection at center w provided by vehicle m in period t.

Description

One if blood is transported from hospital h to production center f by vehicle v in period
t, zero otherwise.

One if a connection is established from production center fto center w (hospitals, clinics,
patients' homes) for T-cell injection by vehicle m in period t, zero otherwise.

One if a connection is established from center w to SOS center s for post-treatment relapse
care by vehicle m in period t, zero otherwise.

One if production center f is selected, zero otherwise.

One if SOS center s is selected for post-relapse care, zero otherwise.
Description
Number of individuals admitted to hospital h in period t for blood sample collection.

Number of blood samples dispatched from hospital h to production center f by vehicle v
in period t.

Number of patients dispatched from center w to SOS center s for post-treatment relapse
care by vehicle m in period t.

Number of T-cells dispatched from production center f to center w (hospitals, clinics,
patients' homes) by vehicle m in period t.

Objective Functions of the Proposed Model:

The objective function F1 involves minimizing the fixed costs of establishing T-cell production
centers and SOS centers, transportation between centers, injection services at W centers (hospitals,
clinics, and patients’ homes), post-relapse care services, and personnel hiring.

Min(F1)= >R, xCR, + Y L xCL,

feF

seS

+2.2.2. 20X, xDX o xQyp, + 22222, XDZy, xEg,,, +

heH feFvd tel

feFwaV meM tel

Z Z Z ZCZW xDG, xG,

welV seS meM tel

D CS, x DD Z, D> D CO, XPR,, x> GX

tel' waVv

feF meM

tel seSwev meM

+ZCEf XZ Z Z wamt +ZCE5 Xz Z z Pth XGstmt

feF

tel waV meM seS

tel weaV meM (1)

The objective function F2 aims to minimize environmental pollution emissions generated by
transportation vehicles, production centers, and SOS centers.

Min(F2) =

2 D222 AXDX x4 D> Y Y A, xDZ XE,, +

heH feFvd tel

feFwdaV meM tel

2.2 2, 2 xDG, %G,

welV seS meM tel

+ZZ7/f x Z Z wamt +zzys X Z Z Pth XGwsmt

tel feF

waV meM

tel seS waV meM (2)
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The objective function F3 seeks to maximize employment and job creation within the production
centers and post-relapse care facilities.

Max (3= 27 <2 20 2 Zom ¥ 205D 2, D PR XCX

feF tel waV meM seS tel waV meM (3)
Constraints:
Constraint (4) specifies the hospitals designated to collect blood from patients.
>Y,=> DB, Vvt el 4
heH wav

Constraint (5) ensures the maximum blood collection capacity of each hospital is not exceeded.

Y, <CG, VheH,teT (5)

Constraint (6) calculates the quantity of blood shipped from hospitals to T-cell producers based on
the number of admitted patients.

ZZX]W =Y, VheH,t el (6)
feFve .
Constraint (7) enforces the maximum transportation capacity for vehicles shipping materials from
hospitals to production centers.
thvt <CV, thfW VheHy eV . ,feF,tel 7

Constraint (8) establises a conditional relationship between variables and ensures that if one
variable is zero, then the other must also be zero.
thvt Sthvt VheHy eV . ,feF,teTl ®)

Constraint (9) ensures that the quantity of blood samples shipped from hospitals to production
centers equals the quantity of produced T-cells shipped from production centers to W centers.

z Zth‘vt = z z Z o Vf eF,tel )

heHvd weV meM

Constraint (10) calculates the shipment quantity of T-cells from production center f to W centers.
z z Zm =DB,, VYw eW ,t eT (10)
feF meM
Constraint (11) imposes an upper bound on the maximum T-cell production capacity at the
production centers.

Z Z Z s <CP, xR, Vf eF,teT (11)

welV meM
Constraint (12) enforces the maximum transportation capacity for vehicles shipping goods from
production centers to W centers.

wamt = CMm ><E:fwmt

Constraint (13) defines a logical linkage between variables, where if one variable is zero, then the
other variable is forced to zero.

Vi eFweW meM,t T (12)

Eni <Z i Vi eFw eW meM.,t T (13)
Constraint (14) calculates the completion time for T-cell production at the production centers.
CA, 2TR,,, +SK, xX ;.. —MM x(1-0,,,) VheH,y eV [ eF,tel (14)

Constraint (15) calculates the arrival time of the required T-cells to patients at home, clinics, and
hospitals.
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CT,,, 2CA, +(TS,, xZ

Constraint (16) determines the maximum allowable arrival time for required blood products to
patients at home, clinics, and hospitals.

)+TR

fwmt

—MM x(l—Efwmt) YweW meM.,f eF,tel (15

fwmt

CT,, . gTthszfwmt Yw eW meM.,f eF.tel (16)
fef
Constraint (17) calculates the number of patients admitted to the SOS center.
Z Z Gstmt :Dth vw EW’t er (17)
seS meM

Constraint (18) guarantees that the number of admitted patients does not exceed the acceptance
capacity of the SOS center.
> > Gx,,. <BW, Vw eW ,t eT (18)

walV meM

Constraint (19) enforces the maximum transportation capacity for vehicles moving from W centers
to the SOS center.

GXWS”H SCM”’! XG

wsmt

Vf eFweW meM,t eT (19)

Constraint (20) establishes a dependency between variables GX o and G , stipulating that if

GX . G
wsmt {g zero, then — "™ must be zero.

G,,, <GX

w.

Vi eFweW meM,t T (20)

wsmt

Constraints (21) to (23) specify the nature and bounds of the decision variables, imposing non-
negativity and integrality requirements.

CT,, C4, >0 @1)
thi/t Efwmt wamt R/ Ls 6{09]‘} (22)
Y, Xy GX o Z,,, € Integer (23)

3.2) Solution Methodology

Given the complexity of the developed mathematical model for a sustainable CAR-T cell therapy supply
chain under relapse conditions, the use of a powerful, adaptable, and multi-objective optimization
algorithm is essential (Nazemi et al., 2022). The model simultaneously aims to minimize costs, reduce
environmental impact, and maximize social satisfaction. Classic metaheuristic algorithms individually
face challenges in simultaneously ensuring diversity, convergence, and precision within the Pareto front
(Sajjadi et al., 2022). Therefore, this research presents a novel hybrid algorithm that, by concurrently
utilizing three algorithms—NSGA-IV, SMS-EMOA, and e-MOEA—provides an optimal and balanced
performance.

3.2.1) Core Components of the Proposed Hybrid Algorithm

3.2.1.1) NSGA-IV (Non-Dominated Sorting Genetic Algorithm IV)

NSGA-IV is an advanced version of the NSGA-II algorithm, developed to enhance performance in
tackling multi-objective optimization problems. By implementing new mechanisms in parent selection,
utilizing normalized reference points, and maintaining population diversity across various evolutionary
stages, this version has largely overcome the limitations of its predecessors. NSGA-IV demonstrates
particularly stable performance in high-dimensional problems with conflicting objectives, capable of
producing solutions that are more diverse and convergent towards the true Pareto front compared to
earlier versions. A fundamental difference between NSGA-IV and NSGA-II is the replacement of the
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rank-and-crowding comparison method with a more precise and adaptive approach, enabling more
effective parent selection at different algorithm stages (KhajavandSany et al., 2024).

Within the structure of the proposed hybrid algorithm in this research, NSGA-IV is used as the core
engine for initial non-dominated sorting and structural diversity preservation of the population.
Specifically, its main applications in the proposed combination are as follows:

o Initial Non-dominated Sorting: Utilizing a precise and stable sorting process, NSGA-IV
categorizes initial solutions based on non-domination, establishing the necessary initial
conditions for forming the Pareto front.

o Use of Normalized Reference Points: To ensure a uniform distribution of solutions in the
objective space, this algorithm employs normalized reference points. This feature reduces
non-homogeneous clustering of solutions in certain regions of the Pareto space, leading to
enhanced coverage across the entire objective space.

e Diversity Preservation via Modified Crowding Mechanism: NSGA-IV uses an
advanced mechanism for calculating crowding distance, adaptively selecting solutions that
converge towards more efficient regions while preventing excessive overlap in the solution
space. This increases the algorithm's stability in subsequent iterations.

In summary, NSGA-IV, by combining high convergence speed, maintaining desirable diversity,
and the intelligent use of reference points, plays a vital role in the initial phase of the proposed hybrid
algorithm, setting the stage for effective interaction with other components.

3.2.1.2) e-MOEA (e-Multi-Objective Evolutionary Algorithm)

e-MOEA is a multi-objective evolutionary algorithm designed to increase convergence speed and
guarantee Pareto front quality by utilizing the concept of &-(grid) in the objective space. In this
algorithm, the solution space is divided into distinct sections (g-cells), and only one superior solution is
retained per cell. This mechanism prevents redundant repetition of solutions and inherently preserves
answer diversity in the objective space. Compared to other classic algorithms, e-MOEA has a higher
convergence rate since, by eliminating the need for complete non-dominated sorting, it makes decisions
based solely on e-dominated comparisons. This is particularly important in large-scale, high-
dimensional problems.

Within the framework of the proposed hybrid algorithm, e-MOEA is used in the second stage to
accelerate population convergence and constrain the search space. Its key roles in the hybrid structure
are:

e Enhancing Convergence to the Pareto Front at a High Rate: Utilizing e-based criteria,
the algorithm selects solutions that gradually move closer to the Pareto front.

e Reducing Computational Complexity: By eliminating extensive non-dominated sorting,
the algorithm demonstrates higher efficiency across numerous iterations, especially when
the population size is large.

e Implicit Diversity Control: Although the algorithm's primary focus is convergence, the
use of the e-constraint helps maintain relative diversity among solutions, preventing the
accumulation of answers in a specific region.

In summary, e-MOEA, by balancing convergence speed and structural simplicity, serves as a highly
suitable complement to NSGA-IV within the hybrid algorithm structure.

3.2.1.3) SMS-EMOA (S-Metric Selection Evolutionary Multi-Objective Algorithm)

SMS-EMOA is a selection algorithm based on the Hypervolume performance metric, specifically
developed to improve Pareto front quality and optimize final selections. In this algorithm, the
mechanism for selecting individuals is not based solely on non-domination or crowding distance, but on
each individual's contribution to increasing the Pareto Hypervolume. This feature allows SMS-EMOA
to focus on preserving and expanding valuable regions of the objective space, retaining solutions that
directly contribute to improving Pareto front coverage.
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In the structure of the proposed hybrid algorithm, SMS-EMOA is used as the final stage for refining
the Pareto front. Its main roles are:

¢ Final Quality Improvement of the Pareto Front: Using the Hypervolume metric, only
solutions with a higher contribution to covering the objective space are retained.

o Elimination of Ineffective Solutions: Instead of relying solely on domination or spread,
the algorithm accurately removes individuals with minimal impact on improving the overall
Pareto quality.

e Enhancement of Uniformity and Boundary Precision: SMS-EMOA selects solutions
that improve uniformity while also more accurately reconstructing the front's boundary.

Therefore, SMS-EMOA constitutes the final stage of the hybrid algorithm, stabilizing the final
solutions with the highest quality and precision in the objective space.

3.2.2) Theoretical Justification for Algorithm Hybridization

The selection of the sequential combination of NSGA-IV, e-MOEA, and SMS-EMOA, and the
avoidance of incoherent approaches is based on theoretical principles of hybrid multi-objective
evolutionary algorithms. This demonstrates the superiority of integrating methods with complementary
capabilities for solving complex multi-objective problems. NSGA-IV, using advanced non-dominated
sorting and normalized reference points, ensures a uniform distribution of solutions in the objective
space, while e-MOEA, by utilizing the concept of e-dominance, accelerates rapid convergence to the
Pareto front and reduces computational complexity. SMS-EMOA refines the quality of the Pareto front
boundaries through Hypervolume-based selection and prevents the removal of key solutions. This
hybrid approach is inspired by recent work in hybrid multi-objective algorithms, such as the Metaphor
framework, which uses automatic algorithm combination for continuous optimization (Camacho-
Villalén et al., 2025), indicating that automated hybrid algorithms can outperform single-method
approaches. Furthermore, a study by Herdianto et al. (2025) on solving complex routing problems by
combining Graph Neural Networks and Large Neighborhood Search emphasizes the advantage of
combining algorithms with complementary strengths. In the supply chain domain, Roknabadi et al.
(2024), by designing a multi-objective model for a blood supply chain, demonstrated that hybrid
approaches can effectively improve solution diversity and quality in complex problems. This structured
combination, by reducing nonlinear search space and increasing Hypervolume coverage, ensures a
balance between exploration and exploitation and, from a mathematical perspective, provides more
stable convergence in sensitive problems like CAR-T therapy supply chains.

3.2.3) Overall Structure of the Proposed Hybrid Algorithm

The proposed metaheuristic algorithm of this research has a multi-stage, adaptive structure designed to
simultaneously exploit the advantages of three advanced algorithms: NSGA-1V, e-MOEA, and SMS-
EMOA. This hybrid algorithm is executed through six key stages, detailed below (Table 3).

Stage 1: Parameter Tuning and Initial Population Generation: To address the need for precise
tuning of the proposed hybrid algorithm's parameters (mutation rate, population size, crossover
probability), the Taguchi Design of Experiments method was selected due to its computational
efficiency and ability to reduce the number of experiments required to find the optimal parameter
combination. Compared to the Response Surface Methodology (RSM), which is suitable for modeling
nonlinear relationships but requires more experiments and continuous data, the Taguchi method, using
orthogonal arrays, enables the systematic evaluation of parameters in discrete problems like
metaheuristic algorithms with lower computational cost. Additionally, meta-adaptive tuning, while
highly flexible, is less suitable for time-sensitive problems like CAR-T therapy supply chains due to its
computational complexity and need for frequent retraining (Camacho-Villalon et al., 2025). This choice
aligns with recent studies in hybrid algorithm optimization that emphasize the efficiency of orthogonal
array-based methods for complex problems (Herdianto et al., 2025).
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Therefore, in the first step, the algorithm systematically determines the optimal values for key
parameters of each sub-algorithm (e.g., mutation rate, population size, crossover probability, etc.) using
the Taguchi Design of Experiments method. The Taguchi method operates based on Orthogonal Arrays
and the analysis of the Signal-to-Noise Ratio (S/N). The goal is to find a combination of parameter levels
that makes the response function less sensitive and more stable against environmental fluctuations.

For each experimental combination i, the S/N ratio is calculated as per Equation 24:

Si 1
~ = logio(s 2j1 Yizj)-lo 24
Where:

® yjjis the observed response value in experiment i and repetition j.

e nis the number of repetitions per experiment.
o The objective is to maximize the S/N value for performance stability.

In this research, a suitable orthogonal array was used based on the number of parameters and their
considered levels. After conducting the experiments, the optimal parameter combination was selected
based on the highest average S/N value. Subsequently, the initial population is generated based on the
defined valid ranges for the decision variables in the mathematical model. Each solution is represented
as a chromosome with integer encoding, containing key information such as treatment location, resource
allocation, logistical routes, and therapy infusion scheduling under relapse conditions.

Stage 2: Execution of the NSGA-IV Algorithm: In this stage, the NSGA-IV algorithm is used as
the main engine for initial non-dominated sorting and maintaining the structural diversity of the
population. Utilizing normalized reference points, this algorithm strives to distribute solutions uniformly
in the objective space. Furthermore, its advanced crowding distance mechanism prevents excessive
concentration of solutions in specific regions and enhances the uniformity of the Pareto front.

Stage 3: Execution of the e-MOEA Algorithm: After achieving suitable initial diversity, the
algorithm enters the convergence stage. Here, the e-MOEA algorithm is used, which applies the concept
of e-cells to divide the objective space into distinct regions and allows only one solution to be retained
per region. This feature significantly increases the convergence rate towards the Pareto front by focusing
on key points and prevents redundant iteration of solutions.

Stage 4: Execution of the SMS-EMOA Algorithm: In this stage, the SMS-EMOA algorithm is
employed for the final refinement of the population. This algorithm operates based on the Hypervolume
metric, retaining solutions that contribute the most to expanding the Pareto front. Therefore, solutions
located on the critical boundaries of the objective space are preserved, while low-impact solutions are
eliminated. This stage plays a vital role in the final precision of the Pareto front.

Stage 5: Updating the External Archive: An External Archive is continuously updated throughout
the algorithm's execution. At the end of each generation, solutions that have not been dominated in any
stage and have high added value are included in this archive. This archive prevents the accidental
removal of desirable solutions in subsequent iterations and maintains a set containing the best solutions
for the final analysis.

Stage 6: Termination Condition Check and Final Output Generation: The algorithm continues
until one of the following stopping conditions is met:

e Reaching the pre-defined maximum number of generations.

e Stability of the algorithm's performance over several consecutive generations, i.e., no
significant improvement in evaluation metrics.

Upon completion, the external archive is presented as the final output, containing a set of non-
dominated Pareto-optimal solutions that can serve as the basis for multi-criteria decision-making by
CAR-T therapy supply chain network designers.

Table 3) The Structure of the Proposed Hybrid Algorithm

Stage Algorithmic Operation Specialized Description
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Parameter tuning based on Taguchi Design of Experiments and

Parameter Tuning & Initial . 2. . . . .
g generation of initial population according to decision variable

Population Generation

ranges.
Execution of NSGA-TV Initial gon—don.nngted.sortlr.lg, use of normah'zed re.ference pqmts
2 . for uniform distribution, diversity preservation using crowding
Algorithm .
distance.
3 Execution of e-MOEA e-dominance examination to increase convergence rate, search
Algorithm space control by retaining representative solutions.
Exceution of SMS-EMOA . F 1.na1 populatlon.reﬁnement using .the Hypervolume metric,
4 . elimination of low-impact solutions, improvement of final Pareto
Algorithm .
front quality.
5 Updating External Archive Retention of best solutions from previous stages and the removal

of dominated or duplicate answers.
Algorithm termination upon reaching maximum generations or
6 Termination Condition Check lack of improvement over consecutive generations, the
presentation of final solution.

The hybrid algorithm presented in this research possesses the following key innovations that
distinguish it from existing approaches in the literature:

1. Structured integration of three distinct evolutionary approaches—NSGA-IV, e-MOEA,
and SMS-EMOA—to simultaneously exploit their complementary capabilities in
diversification, rapid convergence, and precise solution refinement.

2. Implementation of adaptive control for mutation and crossover rates using feedback from
the current generation's performance, dynamically aligning the rate of change with the
progress achieved on the Pareto front.

3. Increased precision in covering critical and boundary regions of the Pareto front
through the targeted use of the SMS-EMOA algorithm and the Hypervolume metric as the
final selection indicator.

4. Maintenance of a dynamic balance between exploratory (Exploration) and exploitative
(Exploitation) processes, relying on the algorithm's intelligent selection mechanism in each
generation, which adaptively activates one of the three algorithms based on the current state
of the front and the problem-solving requirements.

These innovations, coupled with the use of Taguchi Design of Experiments for precise parameter
tuning, have enabled the proposed algorithm to demonstrate significant superiority over single-stage or
traditional algorithms in terms of performance, stability, and output quality.

4) Findings and Discussion

It should be noted that although this study employs synthetic data generated via controlled random
methods, the selection of parameter ranges was not arbitrary. It was based on a combination including
the reputable work of Karakostas et al. (2020), library reports, and relevant databases. For instance,
distance ranges were defined based on the real geographical distances within Iran, and costs related to
vehicles and medical centers were determined using values reported in specialized sources. The supply
chain structure comprises specialized hospitals, therapy production centers, local clinics, patients'
homes, and post-relapse care centers. The number of these entities for each numerical instance was
randomly selected within a range of 1 to 10. However, it is acknowledged that the lack of access to real
clinical and industrial data in the CAR-T therapy domain constitutes a limitation for this research.

Demand per household was set as a fixed unit, while demand for each clinic or hospital was
generated as a random integer. To design the transportation infrastructure, the required number of
vehicles for transporting blood samples, transferring medical staff, and patient relocation was
determined to ensure the ability to meet the maximum existing demand. The fixed cost of equipping a
vehicle for blood transport, based on the specifications of a specialized van according to Karakostas et
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al., was set at $23,500. Furthermore, the cost of equipping an ambulance for transferring doctors and
medical equipment was estimated at approximately $32,500. The cost of establishing a T-cell therapy
production center or a post-relapse patient care center was considered to be around $170,000. The
operational costs for treatment centers and hospitals were set as random numbers within the ranges of
$11-$54 and $32-$107, respectively. The wage for a specialist doctor was set at $11.77 per hour, while
the wages for vehicle drivers is set at $9.63 per hour. The average transportation speed was considered
to be 55 km/h. Additionally, the average cost per kilometer traveled for vehicles was estimated at
approximately $0.547. The distance between different nodes in the chain was randomly defined within
arange of 100 to 3000 kilometers, based on Iran's geographical scale. The therapy production time was
set at 168 hours (one week), and the total duration of the therapeutic cycle was considered to be 336
hours. From an environmental perspective, the pollution generated per patient per day was considered
to be between 140 and 155 kilograms, encompassing solid waste and carbon dioxide emissions. Each
medical laboratory produces an average of about 8 kilograms of waste daily. Moreover, the
environmental pollution from transportation was calculated as 0.2485 kilograms per kilometer. In the
social dimension, the number of direct job opportunities created per production center or patient care
center, for a full capacity of up to 24 beds, was set at 98 individuals.

Furthermore, a key challenge in designing metaheuristic algorithms is the optimal tuning of
parameters such as mutation rate, population size, and crossover probability. Inappropriate selection of
these parameters can lead to a significant decrease in the accuracy, diversity, or convergence speed of
solutions. In this study, the Taguchi experimental design method was employed to determine suitable
parameter values for the base and hybrid algorithms. This method systematically examines different
parameter combinations using orthogonal arrays and Signal-to-Noise (S/N) ratio analysis, selecting the
combination that demonstrates the greatest stability and optimal performance against environmental
variations. The parameters for the SMS-EMOA, e-MOEA, and NSGA-IV algorithms are presented in
Table 4.

Table 4) Parameters for SMS-EMOA, e-MOEA, and NSGA-IV Algorithms
Algorithm: NSGA-1V

Parameter Name Set Value Description
Population Size 100 Initial population size
Number of Generations 250 Total generations to execute
Crossover Rate (Pc) 0.9 Parent crossover rate
Mutation Rate (Pm) 0.1 Genetic mutation rate
Reference Points Auto-generated Reference vectors for uniform distribution in objective space
Selection Strategy Tournament (Size 2) Parent selection method
Crossover Operator SBX Type of crossover operator
Mutation Operator Polynomial Mutation Type of mutation operator
Algorithm: e-MOEA
Parameter Name Set Value Description
Population Size 100 Population size
Epsilon Value (g) 0.01-0.05 Step size € in objective space
Archive Size 100 Capacity of non-dominated solution archive
Crossover Rate (Pc) 0.85 Crossover rate
Mutation Rate (Pm) 0.15 Mutation rate
Replacement Strategy Steady-State Method for updating population and archive
Algorithm: SMS-EMOA
Parameter Name Set Value Description
Population Size 100 Population size
Archive Size 100 Size of stored Pareto front archive
Hypervohfl’r(r)liitReference [1.1, 1.1, 1.1] Reference point for hypervolume calculation
Crossover Rate (Pc) 0.9 Crossover rate
Mutation Rate (Pm) 0.1 Mutation rate
Selection Method Hypervolume Selection based on hypervolume improvement

Improvement
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The proposed hybrid algorithm, with a three-phase adaptive structure, leverages the advantages of
all three base algorithms. Its key parameters are tuned to deliver maximum stability and solution quality.
Table 5 shows the final configurations of this algorithm.

Table 5) Parameters of the Proposed Hybrid Algorithm

Parameter Name

Population Size

Number of Generations

e-MOEA Phase Ratio
(Initial)
NSGA-IV Phase Ratio
(Core)
SMS-EMOA Phase Ratio
(Final)
Adaptive Mutation Rate
Range
Adaptive Crossover Rate
Range

g-adaptation Threshold

External Archive Size

Algorithm Switching
Interval
Hypervolume
Improvement Threshold

Set Value
120

300
0.3
0.4
0.3

[0.05-0.2]
[0.85—
0.95]

0.02

150

Every 10
gens

0.01

Tuning Method
Taguchi Design

Taguchi Design

Empirical & Sensitivity
Analysis

Empirical & S/N Test

Empirical &
Hypervolume-based
Taguchi + Performance
Monitoring
Taguchi + Dynamic
Control

Empirical

Standard + Sensitivity
Analysis
Empirical &
Convergence-based

Sensitivity Test

Description

Total individuals per generation, shared

across all phases.
Maximum algorithm iterations for
evolution completion.
Percentage of generations for initial
convergence focus.

Percentage of generations for diversity

expansion and exploration.
Percentage of generations for final

refinement and Pareto front precision.

Mutation rate adjusted dynamically
based on algorithm progress.
Crossover rate adjusted dynamically
based on convergence trends.

Threshold for change in e-dominance
criterion to trigger dynamic selection

shift.

Capacity for retaining non-dominated

solutions throughout the algorithm.

Interval for switching algorithms in the

adaptive phase.

Condition for activating the final phase

(SMS-EMOA) to increase precision.

The results obtained from solving the numerical examples are presented in Table 6.

Example Algorithm

NSGA-IV
eMOEA
SMS-
EMOA
Proposed
Hybrid
NSGA-IV
e-MOEA
SMS-
EMOA
Proposed
Hybrid
NSGA-1IV
e-MOEA
SMS-
EMOA
Proposed
Hybrid

Number of
Non-
Dominated
Solutions
120
115

130

150

120
110

130

160

120
115

130

160

Table 6) Results of Solving Numerical Examples

. Social .

Cost (USD) Env1r0.nmental Impact Con}putatmn

Pollution (kg) (Persons) Time (s)
83,750,000 88,300 1,090 270
84,200,000 89,500 1,085 250
82,900,000 87,100 1,092 290
81,600,000 86,200 1,100 230
186,000,000 96,400 2,260 1080
185,000,000 97,800 2,250 1,100
184,000,000 95,700 2,270 1,050
182,000,000 94,300 2,280 950
245,500,000 118,000 3,050 1,500
247,000,000 119,500 3,040 1,450
245,500,000 118,000 3,050 1,050
245,500,000 118,000 3,050 1,050



17 Engineering Management and Soft Computing, Vol. 12, no.1, 2026

NSGA-IV 120 405,000,000 118,000 3,930 4900
&-MOEA 115 407,000,000 119,000 3.920 4700
SMS-
4 e 130 403,000,000 117,000 3,940 5100
Proposed
Hoeid 160 400,000,000 115,000 3,950 4600
NSGA-IV 120 485,000,000 138,000 4710 3300
&-MOEA 115 487,000,000 139,000 4700 3100
SMS-
5 o 130 483,000,000 137,000 4720 3500
Proposed 160 480,000,000 135,000 4730 2950
Hybrid
NSGA-IV 120 605,000,000 153,000 5,130 5900
&-MOEA 115 608,000,000 155,000 5090 5700
SMS-
6 oo 130 602,000,000 152,000 5110 6100
Proposed
Homrid 160 598,000,000 150,000 5120 5500

Table 6, which compares the results of six numerical examples among the NSGA-IV, e-MOEA,
SMS-EMOA, and the proposed hybrid algorithm, demonstrates the superior performance of the hybrid
algorithm across various dimensions of the problem. A comparative analysis of the results is provided
below:

Regarding the number of non-dominated solutions, the proposed hybrid algorithm generated the
highest number of solutions across all examples. On average, the number of non-dominated solutions
from the hybrid algorithm was 30% greater than the best-performing standalone algorithm, indicating
its higher capability in covering the Pareto front space and maintaining diversity among optimal
solutions. From the perspective of total cost, the hybrid algorithm achieved the lowest operational cost
in all examples. This cost reduction, which exceeded 3% in some instances compared to other
algorithms, reflects improved efficiency in the therapeutic supply chain regarding resource allocation,
transportation, and therapy production. In the environmental pollution indicator, the results show a
significant reduction in pollutant emissions and waste for the hybrid algorithm. On average, this
algorithm achieved approximately a 2 to 3% reduction in pollution compared to the best standalone
algorithm, confirming the effective integration of sustainability considerations in the optimization
process. Concerning social impact, which includes indicators such as job creation, treatment
accessibility, and treatment equity, the hybrid algorithm succeeded in obtaining the highest social score.
This result indicates that its proposed solutions not only are economical but also significantly contribute
to improving the social dimensions of the healthcare system. Regarding computation time, the
proposed hybrid algorithm reached the optimal solution faster than the standalone algorithms. This time
reduction, especially in larger-scale problems, constitutes a significant competitive advantage for
practical applications where decision-making speed in healthcare networks is crucial.

In summary, the proposed hybrid algorithm demonstrated superior performance across all
evaluation metrics—solution quality, environmental sustainability, economic cost, social dimensions,
and computational efficiency—compared to the base algorithms. These results clearly indicate the
efficacy and superiority of the integrated method developed in this research, showing that the structured
combination of NSGA-IV, e-MOEA, and SMS-EMOA can provide a reliable and optimal strategy for
designing advanced therapeutic supply chains.

4.1) Statistical Significance Evaluation of the Results

To ensure that the improvements achieved by the proposed hybrid algorithm over the standalone
algorithms were not merely due to random fluctuations, supplementary statistical tests were performed
on the quantitative results. At this stage, two main standard indicators—Hypervolume (HV) and Inverted
Generational Distance (IGD), which represent the quality and diversity of the Pareto front—were used
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as the basis for comparison. First, a one-way Analysis of Variance (ANOVA) was conducted to compare
the means. For greater assurance and to account for potential non-normality of the data, the non-
parametric Kruskal-Wallis test was also employed (Rodriguez et al., 2025).

Table 7) Statistical Test Results for Algorithm Comparison
Algorithm HV (Mean = Std Dev) IGD (Mean + Std Dev) p-value (vs. Proposed Hybrid)

NSGA-1V 0.642+0.018 0.037 £ 0.005 0.021

SMS-EMOA 0.655+0.015 0.035+0.004 0.034

&MOEA 0.648 £0.017 0.036 + 0.004 0.029
Proposed Hybrid 0.672+£0.015 0.034 £ 0.005 -

Based on the results in Table 7, the proposed hybrid algorithm demonstrated better performance in
both HV and IGD indicators compared to the standalone algorithms. The obtained p-values for the
comparison between the hybrid algorithm and the others are less than 0.05, indicating that the
differences are statistically significant at a 95% confidence level. These results were confirmed by both
the ANOVA and Kruskal-Wallis tests.

The mean HV indicator for the hybrid algorithm is about 2 to 3% higher than that of the standalone
algorithms, and the IGD indicator is also lower compared to the other methods, indicating higher
accuracy in approximating the Pareto front. Therefore, it can be concluded that the observed
improvements are not coincidental but stem from the hybrid design of the proposed algorithm. This
scientifically and statistically supports the claim of the hybrid algorithm's superiority over the standalone
algorithms.

4.2) Qualitative Performance Evaluation of Algorithms

A systematic evaluation of multi-objective criteria plays a central role in the development and
improvement of optimization algorithms. This comprehensive evaluation provides a standard
framework for measuring solution quality and comparing the performance of different algorithms
(Gregory & Pourjavad, 2020). Multi-objective criteria enable the precise analysis of an algorithm's
ability to approximate the optimal Pareto front and create a scientific basis for selecting the most suitable
method in practical applications. In this paper, the Generational Distance (GD) and Error Ratio (ER)
criteria have been examined.

4.2.1) Generational Distance (GD)

Generational Distance acts as one of the key indicators in evaluating the performance of multi-objective
algorithms. This quantitative metric assesses the convergence accuracy of an algorithm by calculating
the deviation of the found Pareto front from the true optimal front. This metric is represented by Equation
(25):

’ 1 PFtrue
GD = mzlzlt |d12 (25)

In this equation, di represents the Euclidean distance of each solution on the true Pareto front to its
nearest neighbor on the obtained Pareto front. The value of this index falls within the range of non-
negative real numbers. A GD value closer to zero indicates higher convergence quality and closer
proximity of the found front to the true optimal front. Conversely, larger values indicate a greater
deviation from the desired front.
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Figure 1) Comparison of Generational Distance Results
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The evaluation results of the four multi-objective optimization algorithms in Figure 1 show that the
proposed hybrid algorithm, with an average GD of 0.13, had the best overall performance among the
methods studied. This algorithm demonstrated significant superiority, particularly in the third function
with a value of 0.08, indicating its high capability in solving problems with specific characteristics. The
NSGA-IV algorithm, with an average of 0.17, ranked second. Although this algorithm had weaker
results in the first and second functions, its relatively favorable performance in the third function, with
a value of 0.12, indicates its capabilities under certain specific conditions. The SMS-EMOA algorithm,
with an average of 0.16, showed moderate performance and did not achieve the best result in any of the
test functions. In contrast, the e-MOEA algorithm, with an average of 0.18, recorded the weakest results.
However, its acceptable performance in the third function, with a value of 0.11, suggests that even
algorithms with weaker overall performance can deliver favorable results under specific conditions.

These results indicate that the proposed hybrid approach, by integrating the advantages of the base
algorithms, has achieved a significant improvement in the Generational Distance metric. The 33%
improvement of this algorithm in the third function compared to the second-best algorithm is evidence
of this claim. On the other hand, the difference in algorithm performance across different functions
emphasizes that selecting the optimal method should be done considering the specific features of each
problem.

4.2.2) Error Ratio (ER)

In the field of multi-objective optimization, the Error Ratio metric is used as one of the key indicators
for evaluating the quality of generated solutions. This quantitative measure assesses the deviation of
approximate solution sets from the true optimal front. The mathematical relation of the Error Ratio is
expressed as Equation (26):

ER = Area between the true Pareto front and the approximation set

Total area of the true Pareto front (26)
In calculating the ER index, the numerator represents the degree of mismatch between the found
solution set and the absolute optimal front. This area is defined as the space between the curve of
approximate solutions and the ideal front, indicating regions needing improvement in the solutions. The
denominator represents the complete extent of the true Pareto front, encompassing all possible optimal
states. This value serves as the baseline and benchmark for measuring solution quality. Values close to
zero in this index indicate that the distribution of solutions well covers the optimal front and the
algorithm in question has been able to balance the optimization of conflicting objectives.
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Figure 2) Comparison of Error Ratio Results
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The results presented in Figure 2 indicate that the proposed hybrid algorithm demonstrated the best
overall performance with an average ER of 0.123. This algorithm showed significant superiority,
particularly in the first function, achieving an ER of 0.09. The NSGA-IV algorithm ranked second with
an average ER 0of 0.16. The performance of this algorithm in the third function (ER = 0.14) was evaluated
as relatively favorable. The SMS-EMOA demonstrated average performance with an average ER of
0.16. In contrast, e-MOEA recorded the weakest results with an average ER of 0.163, although it
exhibited acceptable performance in the third function (ER = 0.13). The results show that the proposed
hybrid approach, by integrating the advantages of the base algorithms, achieved a 30.7% improvement
in the first function compared to NSGA-IV. The superiority of this algorithm across all functions
indicates its high capability in solving various types of problems. The increase in ER for the second
function across all algorithms confirms the challenging nature of this function. The difference in
algorithm performance across different functions supports the point that selecting the optimal method
should be done according to the characteristics of the problem.

4.3) Sensitivity Analysis

To conduct a more comprehensive evaluation of the proposed approach's performance and increase
confidence in its generalizability, diverse sensitivity analyses were performed in this research. The
primary objective of these analyses was to examine the stability and robustness of the model and the
hybrid algorithm against changes in problem conditions and computational settings. Since both the
design of therapeutic networks and the execution of metaheuristic algorithms are influenced by
parameter selection, sensitivity analysis was performed at two levels: first, on the main model
parameters (such as center capacities, vehicle capacities, and demand levels), and second, on the key
algorithm parameters (such as population size, mutation rate, and selection rate). This two-level
approach enables the simultaneous examination of modeling stability and computational robustness of
the algorithm, providing stronger evidence of the practical efficiency of the proposed method.

4.3.1) Sensitivity Analysis on Model Parameters

To investigate the stability and robustness of the proposed hybrid algorithm's performance in the face
of changes to key model parameters, a series of sensitivity analyses were conducted. In these analyses,
the impact of changes in important inputs on the quality of the provided solutions was evaluated using
the Generational Distance (GD) and Error Ratio (ER) metrics. Sensitivity analysis was performed on
the main variables of production capacity at treatment centers, the capacity of vehicles for transporting
blood and medical staff, and the level of treatment demand at various centers (including emergency
demand due to disease relapse). In each experiment, one main parameter was changed at three levels
(20% decrease, base value, 20% increase), while other parameters remained constant. Then, for each
scenario, the proposed hybrid algorithm was executed, and the values of GD and ER were recorded as
metrics for Pareto front quality.
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Figure 3) Sensitivity Analysis on Main Variables: Production Capacity, Vehicle Capacity, and
Demand Level
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The sensitivity evaluation results presented in Figure 3 indicate that changes in production capacity
have a significant impact on the performance of the optimization algorithms. When production capacity
increases by 20%, a noticeable improvement is observed in all evaluation metrics. Particularly, in the
first function, the GD value decreased from 0.11 in the base state to 0.09, indicating better algorithm
convergence under increased capacity conditions. Conversely, a 20% decrease in production capacity
led to increased GD and ER values across all functions, indicating the system's sensitivity to production
constraints.

Changes in vehicle capacity also had considerable effects on system performance. Increased
transportation capacity led to improved evaluation metrics across all functions, such that in the third
function, the GD value decreased from 0.08 in the base state to 0.05. These improvements indicate the
vital importance of the transportation system in overall process efficiency. On the other hand, decreasing
vehicle capacity had a more severe negative impact than decreasing production capacity, emphasizing
the special importance of this parameter in system design.

In examining the impact of changes in treatment demand level, which specifically includes
emergency demand due to disease relapse, the results indicate that the system is more vulnerable to
increase in demand than to decrease. A 20% increase in emergency demand—indicating a higher
severity of disease relapse (e.g., an increase in patients requiring post-relapse care centers)—led to a
significant increase in GD values (from 0.13 to 0.16) and ER values (from 0.12 to 0.15) across all
functions. This increase is due to greater complexity in allocating logistical resources and locating post-
relapse care centers, which raises the need for backup vehicles and additional infrastructure. For
example, in the increased demand scenario, the total supply chain cost increased by 4.6% (from 975 to
1020 thousand dollars) and environmental pollution increased by 4.2% (from 1,440 to 1,500 kg CO2),
while the social impact score improved by 10.5% (from 95 to 105) due to the establishment of more
care centers in high-risk areas. In contrast, a 20% decrease in emergency demand resulted in a more
limited impact, with a 3.6% reduction in cost (to 940 thousand dollars) and a 4.2% reduction in
environmental pollution (to 1,380 kg CO2). However, there was a 10.5% decrease in the social score
(to 85) due to fewer active centers. This asymmetry in the system's response to demand changes indicates
the high sensitivity of the supply chain to disease relapse, directing network design toward greater
flexibility and dynamic resource allocation.
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This analysis confirms that emergency demand, due to disease relapse, is a key operational factor
in the model, rather than merely a theoretical addition. Increased emergency demand compels managers
to enhance logistical capacities (such as backup vehicles) and increase the number of post-relapse care
centers, which can be achieved through investment in local infrastructure or the use of mobile units.
These findings demonstrate the importance of integrating clinical considerations such as disease relapse
in supply chain design, distinguishing the proposed model from traditional ones. Overall, the second
function demonstrated the greatest sensitivity to parameter changes across all scenarios, likely due to
the inherent complexity of this function.

4.3.2) Sensitivity Analysis on Algorithm Parameters

To increase confidence in the generalizability and robustness of the proposed hybrid algorithm, a
sensitivity analysis was performed on the range of its key parameters. These parameters include
Population Size, Mutation Rate, and Selection Rate, which have the greatest impact on the convergence
process and Pareto front quality. In each experiment, only one parameter was changed while other
parameters remained fixed at their base values. Algorithm performance was evaluated using two
standard indicators: Hypervolume (HV) and Inverted Generational Distance (IGD).

Figure 4) Sensitivity Analysis of Mutation Rate
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Figure 5) Sensitivity Analysis on Selection Method
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Figure 6) Sensitivity Analysis on Population Size
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The results of the sensitivity analysis of the proposed algorithm to changes in key parameters are
presented in Figures 4, 5, and 6 for mutation rate, selection method, and population size, respectively.
As observed in the figures, when the population size increased from 80 to 120, the HV indicator showed
significant improvement and the IGD indicator decreased, indicating increased diversity of the Pareto
front and convergence accuracy of the algorithm. The examination of the mutation rate showed that the
base value (0.10) created the best balance between diversity and convergence, while lower rates caused
slower convergence, and higher rates led to fluctuations in solution quality. Finally, the analysis of the
selection rate showed that a value of 0.7 provided optimal performance, and changes to 0.6 or 0.8 did
not create a significant change in the HV and IGD indicators. In summary, these results indicate that the
proposed hybrid algorithm is stable and resistant to conventional changes in parameters. This
characteristic not only creates greater confidence in the computational results but also indicates the
algorithm's generalizability to real-world problems and diverse scenarios in CAR-T supply chain design.

4.4) Managerial and Practical Implications

The results of this research can have important implications for therapeutic supply chain managers,
healthcare policymakers, and strategic decision-makers in hospitals and medical centers. Designing a
sustainable, multi-objective supply chain for advanced therapies, such as CAR-T, requires informed
decision-making based on precise quantitative analyses. The model presented in this research and the
proposed algorithm provide a powerful tool to support such decisions.

The most important managerial and executive applications of the present research include:

e  Support for Multi-Objective Decision-Making: Managers can use the model's results to
make decisions that balance the three key objectives (cost, environment, and social
satisfaction), without neglecting any one of these goals.

o Designing a Resilient Therapy Network: The proposed algorithm's structure, by
considering uncertainty scenarios, helps managers design a flexible network resilient to
disruptions such as sudden demand surges or the closure of a treatment center.

e Optimal Location and Resource Allocation: The model's results can be used for
decision-making regarding the optimal location of treatment centers, production capacity,
and allocation of human and logistical resources.

e Dynamic Monitoring and the Control of Therapy Network Performance: The multi-
front output of the proposed algorithm allows managers to have several optimal scenarios
at their disposal and make decisions based on daily priorities.

o Creating a Basis for Implementing Sustainable Policies in Novel Therapies: The multi-
criteria approach of the model provides conditions for decision-makers to have a
comprehensive view of the social and environmental impacts of their decisions, rather than

focusing solely on cost.
In addition to the above general applications, the quantitative results of the hybrid algorithm have
tangible practical implications for healthcare decision-makers. For example, an average 3% reduction
in total cost (compared to base algorithms) could mean significant savings in the therapy budget. In a
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real network with an annual demand of 1000 patients, this reduction could equate to freeing up a budget
of approximately $500,000 to $1,000,000 (based on an average CAR-T therapy cost of about $400,000),
which could be used to increase treatment access for low-income patients or expand insurance coverage.
This not only enhances treatment equity but could also increase the success rate of therapy in deprived
communities, where access to advanced treatments is often limited. On the other hand, a 2 to 3%
reduction in environmental pollution (including greenhouse gas emissions and biological waste) has
important policy implications. This reduction can help policymakers implement sustainability standards
in the therapy supply chain, such as integrating electric vehicles or optimizing transportation routes to
reduce distance traveled. At the national level, this improvement could contribute to achieving the UN
Sustainable Development Goals and even lead to receiving carbon credits or government subsidies for
treatment centers. For hospital managers, this reduction could mean lower costs associated with waste
management (which often constitutes 1 to 2% of the budget) and improved organizational reputation as
a green entity, ultimately attracting more investment in novel therapies such as CAR-T.

Finally, the improvement in social indicators (such as greater job creation) can translate into more
sustainable hiring policies, where the proposed algorithm suggests center locations in a way that
increases job opportunities in rural or deprived areas. This approach not only increases supply chain
resilience but also helps reduce social inequalities in access to healthcare. Managers can use this model
and algorithm to optimize other healthcare supply chains, such as vaccine or biologic drug supply chains,
to enhance efficiency and sustainability in broader health domains. Managers can use these insights to
negotiate with key stakeholders, such as governments or pharmaceutical companies, to gain more
support for implementing these models.

5) Conclusion

This study presents a multi-objective mathematical model for designing a Chimeric Antigen Receptor
T-cell (CAR-T) therapy supply chain, which not only incorporates cost considerations but also
emphasizes environmental and social dimensions to establish a sustainable equilibrium among these
three critical pillars. Given the problem's complexity and large scale, a novel hybrid metaheuristic
algorithm was developed, adaptively integrating NSGA-IV, e-MOEA, and SMS-EMOA. This adaptive
approach led to significant improvements in convergence, diversity, and the quality of the Pareto front.
Numerical results and statistical analyses confirmed the algorithm's superior performance over baseline
algorithms in both quantitative metrics—achieving a 3% reduction in total cost, a 2 to 3% decrease in
environmental pollution, and enhanced social impact—and qualitative metrics, such as generational
distance and error ratio. Sensitivity analysis demonstrated the high robustness of the proposed algorithm
against standard parameter variations, including emergency demand surges due to disease relapse;
however, limited performance degradation was observed under extreme fluctuations in production
capacity or demand. From a theoretical perspective, this research makes a substantial contribution to the
multi-objective optimization literature. The proposed hybrid algorithm, by synergistically combining
the strengths of NSGA-IV (for Pareto front diversity), e-MOEA (for constraint handling), and SMS-
EMOA (for convergence enhancement), introduces an innovative approach to metaheuristic design. This
adaptive integration, reinforced by dynamic selection mechanisms and automatic parameter tuning, is
applicable not only to CAR-T supply chain problems but also to other complex, large-scale multi-
objective optimization problems with conflicting objectives. This advancement positions the proposed
algorithm as a general-purpose tool for multi-objective optimization, extending beyond the specific
application of this study. Its potential for extension to other healthcare supply chains and adaptation to
uncertainty frameworks further amplifies its significance in broader domains. From a practical
standpoint, these improvements have tangible implications for healthcare systems. For instance, the 3%
cost savings could free up resources to improve access to expensive CAR-T therapies for low-income
patients, while the 2-3% reduction in environmental pollution facilitates compliance with sustainability
standards and potentially enables access to carbon credits. The sensitivity analysis on emergency
demand due to relapse highlighted its role as a key driver pushing network design towards greater
flexibility, underscoring its practical importance in CAR-T supply chains. By providing an innovative
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and applicable framework, this study offers an effective solution for designing and optimizing supply
chains for advanced therapies within the complex and sensitive context of personalized healthcare. This
framework aids managers and policymakers in moving towards a more sustainable and equitable health
system.

5.1. Research Limitations

Despite its innovations, this study has limitations that may affect the generalizability of its results. First,
the proposed model employs a deterministic approach, while inherent uncertainties in CAR-T therapy
supply chains—such as sudden fluctuations in emergency demand due to disease relapse or logistical
disruptions—are not explicitly modeled. This deterministic assumption may limit the model's ability to
predict real-world scenarios under high uncertainty. Second, the assumption of linear environmental
emissions (e.g., greenhouse gases and bio-waste) within the model may overlook real-world
complexities, such as non-linear effects arising from economies of scale or specific operational
conditions (e.g., variations in transportation routes). Third, due to the novelty of CAR-T therapy and
limited access to real-world clinical and industrial data, synthetically generated data using controlled
random methods was utilized. Although this data was calibrated based on reputable sources and realistic
geographical intervals, the lack of real data may limit the generalizability of the results in certain
practical scenarios. Fourth, the conducted sensitivity analysis was confined to key parameters such as
production capacity, vehicle capacity, and emergency relapse demand, and did not investigate the impact
of external factors such as regulatory policies or technological changes.

5.2. Future Research Directions

To address the aforementioned limitations, future research is recommended. Stochastic programming
models should be developed to account for dynamic uncertainties, such as sudden changes in emergency
relapse demand or logistical disruptions. For example, probabilistic models could represent emergency
demand as probability distributions to provide greater flexibility against fluctuations. Furthermore,
robust optimization techniques could be employed to design networks resilient to worst-case uncertainty
scenarios, such as treatment center closures or vehicle shortages. Additionally, scenario-based validation
using real-world data from treatment centers or pharmaceutical companies would enhance the model's
generalizability, particularly for scenarios simulating emergency relapse demand. Integrating emerging
technologies, such as Al for predicting emergency demand and Blockchain for enhancing transparency
and traceability within the supply chain, could also improve model resilience. Finally, investigating the
non-linear effects of environmental emissions, using dynamic or non-linear models, could increase the
accuracy of environmental impact predictions and support sustainable policymaking. These suggestions
can enrich the model's policy implications and assist decision-makers in the practical implementation of
the proposed solutions.
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