Agrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science.
APL Materials, 4(5), 053208.
https://doi.org/10.1063/1.4946894
Chehreh, S., & Sarabadani, A. (2023). A model based on random forest algorithm and Jaya optimization to predict bank customer churn.
Engineering Management and Soft Computing, 9(2), 132–148.
https://doi.org/10.22091/jemsc.2024.9541.1174
Dieter, G. E., & Bacon, D. J. (1988). Mechanical metallurgy. McGraw-Hill.
Djoudjou, R., Gbenonchi, R., Alili, B., & Benyounes, K. (2021). Robust particle swarm optimization algorithm for modeling the effect of oxides thermal properties on AMIG 304L stainless steel welds.
ResearchGate Preprint.
https://doi.org/10.32604/cmes.2024.053621
Gandomi, A. H., & Yang, X. S. (2011). Benchmark problems in structural optimization. In
Computational Optimization, Methods and Algorithms (pp. 259–281). Springer.
https://doi.org/10.1007/978-3-642-20859-1
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Hassani, Z., & Khosravi, M. (2020). Diagnosis of coronary heart disease using hybrid intelligent systems based on whale optimization algorithm, simulated annealing and support vector machine.
Engineering Management and Soft Computing, 6(2), 167–181.
https://doi.org/10.22091/jemsc.2018.1277
Leslie, C. V. (1981). The physical metallurgy of steels. Hemisphere Publishing.
Mehta, P., Bukkapatnam, S. P., Hung, C. R., & Mannan, S. K. (2019). Machine learning for materials development.
International Journal of Materials Research, 110(1), 5–13.
https://doi.org/10.3139/146.111710
Niazi, N., & Razavi, H. (2024). Predicting the choice of financing for start-ups using machine learning algorithms and behavioral biases.
Engineering Management and Soft Computing, 10(1), 238–261.
https://doi.org/10.22091/jemsc.2024.11203.1200
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: Recent applications and prospects.
npj Computational Materials, 3(1), 54.
https://doi.org/10.1038/s41524-017-0056-5
Rajwar, P., Bansal, J. C., & Nagar, A. (2023). An exhaustive review of the metaheuristic algorithms for optimization.
Artificial Intelligence Review, 56(12), 10377–10456.
https://doi.org/10.1007/s10462-023-10470-y
Singh, S., Bai, M., Matthews, A., Goel, S., & Joshi, S. N. (2025). Critical raw material-free multi-principal alloy design for a net-zero future.
Scientific Reports, 15(1), 12345.
https://doi.org/10.1038/s41598-025-87784-0
Tapio, R. (2025). Comparative analysis of multiple linear regression and random forest regression in predicting academic performance of students in higher education.
Asian Research Journal of Mathematics, 21(4), 170–181.
https://doi.org/10.9734/arjom/2025/v21i4919
Tejani, G. G., Mashru, N., Patel, P., & Pholdee, N. (2024). Application of the 2-archive multi-objective cuckoo search algorithm for structure optimization.
Scientific Reports, 14(1), 31553.
https://doi.org/10.1038/s41598-024-82918-2
Totten, G. E., & Howes, M. A. H. (1995). Tool steels. ASM International.
Zhao, Y., Li, M., Wang, Z., & Chen, J. (2023). An improved composition design method for alloys using particle swarm optimization and machine learning models.
AIP Advances, 13(11), 115317.
https://doi.org/10.1063/5.0134416
Send comment about this article