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1) Introduction 

The steel industry, as the backbone of the global economy, has consistently pursued the production of 

products with superior mechanical properties, lower cost, and higher efficiency. Among these, yield 

strength stands out as one of the most crucial criteria for evaluating structural performance, playing a 

decisive role in material design and selection for critical applications (Dieter & Bacon, 1988). An increase 

in yield strength signifies a material's enhanced ability to withstand greater stress before undergoing 

permanent deformation, directly contributing to improved safety, durability, and weight reduction of 

structures (Callister & Rethwisch, 2018). For instance, in the aerospace industry, the use of high-strength 

steel alloys enables the design of lighter and more efficient airframes and engines (Reed, 2006). 

Traditional alloy design methods, grounded in empirical knowledge, metallurgical experimentation, 

and trial-and-error approaches, face significant challenges. These methods not only demand considerable 

time and financial resources but also often fail to achieve optimal solutions due to the non-linear and 

multivariate complexity of the relationships between elemental composition and final properties (Ashby, 

2013). These limitations underscore the growing need for novel and intelligent approaches. 

In recent decades, materials informatics and artificial intelligence have brought about 

transformative changes in the field of materials development (Agrawal & Choudhary, 2016). By 

leveraging machine learning algorithms, these approaches can learn complex, non-linear patterns from 

vast datasets of experimental and simulation results. Machine learning can act as a rapid and cost-

effective surrogate model, predicting mechanical properties in a fraction of a second—a task that might 

take weeks through physical experimentation (Mehta & Mannan, 2019). Accordingly, an effective 

strategy involves integrating predictive machine learning models with metaheuristic optimization 

algorithms (Hassani et al., 2020). In this framework, the machine learning model maps the response 

space between composition and mechanical properties, and the optimization algorithm, acting as an 

intelligent explorer, searches this learned space for compositions that deliver the most desirable 

properties (Ramprasad & Kim, 2017). 

The primary innovation of this research is the introduction of a two-stage intelligent framework for 

designing steel alloys with maximized yield strength. In the first stage, a Random Forest machine 

learning model, chosen for its strong capability in handling non-linear data and outliers, serves as an 

accurate predictive model. In the second stage, this trained model is integrated as the objective function 

into the COA. This algorithm, renowned for its use of Lévy flight, exhibits a superior capacity for global 

exploration and identifying optimal points within complex search spaces (Yang & Deb, 2009). The 

ultimate goal is to provide an intelligent and efficient solution to overcome the challenges of traditional 

alloy design and to establish a generalizable framework for future research in this domain. 

This paper is organized as follows: Section 2 reviews the relevant research background and 

literature. Section 3 details the research methodology, including the dataset, machine learning model, 

and optimization framework. Section 4 presents, discusses, and analyzes the findings and results. 

Finally, Section 5 provides the conclusion, summarizing key insights and suggesting directions for 

future work. 

2) Literature Review 

Data-driven materials design has evolved into a dynamic and rapidly growing field, achieving maturity 

in recent years thanks to the increased accessibility of large databases and significant advancements in 

machine learning algorithms (Rajan, 2005). In an influential review paper, Agrawal and Choudhary 

(2016) highlighted the pivotal role of machine learning in accelerating the discovery of new materials, 

introducing it as a novel paradigm in materials science. 

In the context of predicting steel properties, various models have been employed. Wang et al. (2018) 

utilized Artificial Neural Networks (ANN) to predict the yield strength of structural steels, 

demonstrating their ability to model complex non-linear relationships. However, due to challenges such 

as overfitting and the need for large datasets, tree-based models have gained greater popularity. In his 

seminal paper, Breiman (2001) introduced Random Forests, showing that this method creates a robust 
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and resilient model by aggregating numerous weak decision trees, resulting in excellent performance 

for predicting material properties. Consequently, this research employs the Random Forest model as the 

primary predictive tool. 

To address optimization problems, numerous metaheuristic algorithms have been developed. The 

Particle Swarm Optimization (PSO) algorithm has been applied to alloy composition design, yielding 

promising results (Zhao et al., 2023). Similarly, in studies related to stainless steel, PSO has been used 

to model the effect of oxide compounds on the weld properties of 304L steel (Djoudjou et al., 2021). 

Despite PSO's efficiency in local search, it can sometimes suffer from premature convergence and 

become trapped in local optima (Rajwar et al., 2023; Zhou et al., 2024). 

Beyond PSO, Genetic Algorithms (GA) have also been extensively used (Goldberg, 1989), but their 

convergence rate can be slow. To overcome these limitations, more novel algorithms have been introduced. 

The COA, proposed by Rajabioun (2011), is inspired by the brood parasitism behavior of cuckoos. 

Its defining feature is the use of Lévy Flight, which grants it a superior capability for global exploration 

and helps prevent entrapment in local optima. Several studies have also shown that COA outperforms 

algorithms such as PSO and GA in complex optimization problems (Gandomi & Yang, 2011). This 

capability has made it an attractive choice for emerging applications. For instance, Tejani et al. (2024) 

developed a multi-objective version of COA for structural optimization. Furthermore, Genc and 

Kalimbetova (2024) demonstrated the successful application of COA in designing intelligent 

controllers, indicating its ability to solve real-world engineering problems. 

Alongside data-driven approaches, classical metallurgical knowledge continues to play a vital role 

in understanding the strengthening mechanisms of alloys. Elements such as Chromium (Cr) and Nickel 

(Ni) (Leslie, 1981), Molybdenum (Mo) and Vanadium (V) (Bhadeshia, 2015), Tungsten (W) (Totten & 

Howes, 1995), and Cobalt (Co) (Reed, 2006) each contribute to increased strength through specific 

mechanisms like solid solution strengthening or carbide precipitation. 

The present research aims to bridge these two domains by seeking to discover an elemental 

combination that maximizes yield strength. By integrating the predictive power of the Random Forest 

model with the global search capability of the COA algorithm, this approach is more comprehensive 

than previous studies, offering an efficient framework for the design of advanced alloys. 

3) Methodology  

This section details the dataset, algorithms, and proposed methodology used in this research. 

Dataset and Preprocessing 

The present study is based on an experimental dataset named "steel_strength.csv," containing 2,469 

samples, sourced from the Kaggle platform. This dataset encompasses various alloy compositions and 

their corresponding ultimate steel strength. The input variables consist of the weight percentages of 

Carbon (C), Manganese (Mn), Silicon (Si), Chromium (Cr), Nickel (Ni), Molybdenum (Mo), Vanadium 

(V), Nitrogen (N), Niobium (Nb), Cobalt (Co), Tungsten (W), Aluminum (Al), Titanium (Ti), and Iron 

(Fe). The target variable is the Yield Strength in Megapascals (MPa). However, it is important to note 

that this dataset, like many experimental datasets, has inherent limitations. A thorough examination 

reveals that the percentage of certain elements, such as Niobium (Nb), Titanium (Ti), and Cobalt (Co), 

is near zero in a significant portion of the samples. While manageable for model training, this may limit 

the model's ability to make accurate predictions for optimal compositions that include higher 

percentages of these elements. Furthermore, the compositional range covered by the dataset represents 

only a subset of the vast space of steel alloys. These limitations impact the model's generalizability to 

compositions outside the training data range, indicating that for future research, collecting more 

comprehensive and diverse data is essential for building a more robust and practical model. 

Following data collection, the first step was data preparation. The following preprocessing steps 

were applied to the dataset: 

• Replacing missing values with zero. 
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• Converting column names to lowercase for code compatibility. 

• Extracting the minimum and maximum range for each element from the existing data to be 

used as optimization constraints. 

Machine Learning Model 

In this study, a Random Forest Regressor was used as a powerful and robust machine learning algorithm 

for predicting steel yield strength. This model, implemented from the scikit-learn library, is an ensemble 

learning method based on decision trees. By aggregating the results of a large number of weak decision 

trees, it mitigates overfitting and demonstrates a high capability in modeling complex, non-linear 

relationships between features (Chehreh & Sarabadani, 2023; Salman et al., 2024). Its core mechanism 

involves two key techniques: bootstrap sampling (sampling with replacement) and random feature 

selection at each node for splitting, which significantly enhance the model's stability and accuracy (Niazi 

& Razavi, 2024; Tapio, 2025). 

To determine the optimal parameters for the Random Forest model, a five-fold cross-validation 

method was employed. This process aimed to achieve an optimal balance between model performance 

and computational time. Key model parameters, including the number of trees and the maximum 

allowed depth for each tree, were systematically examined within a specified range. During the cross-

validation process, the parameter combination resulting in the lowest MSE was selected as the final 

model parameters. This approach ensures that the model's performance is not limited to the training data 

and that it retains the ability to make accurate predictions on new data. The main model parameters set 

for this research are as follows: 

• n_estimators=100: The number of trees in the forest. 

• max_depth=10: The maximum allowed depth for each tree, set to control model 

complexity and prevent overfitting. 

• random_state=42: To ensure result reproducibility and experiment replicability. 

Finally, after parameter tuning, the Random Forest model was trained using 80% of the data as the 

training set. The model's performance was evaluated on the remaining 20% (test set) using the 

coefficient of determination (R²) and MSE metrics to assess its efficiency in predicting yield strength. 

To increase confidence in the model's generalizability, a ten-fold cross-validation was also performed. 

The trained model was then used as the cost function, which is the core component of the evolutionary 

optimization algorithm. 

Cuckoo Optimization Algorithm (COA) 

The Cuckoo Optimization Algorithm (COA) is a metaheuristic algorithm inspired by the natural brood 

parasitic behavior of cuckoo birds, proposed by Rajabioun in 2011. Utilizing three main concepts of 

mutation, egg laying within a radius, and the elimination of old eggs, this algorithm possesses a high 

capability for global exploration and discovering optimal points in complex search spaces. The 

flowchart of the COA algorithm steps is presented in Figure 1. 

Figure 1) Flowchart of the Cuckoo Optimization Algorithm (COA) Steps 
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The algorithm consists of five main stages: 

1. Initialization: Generate an initial population of nests. Each nest represents a potential solution 

to the optimization problem (in this project, a steel alloy composition). 

2. Main Loop (for a specified number of iterations): 

a. Levy Flight Mutation: Each cuckoo (nest) moves in the search space using a random 

walk with long step lengths. This movement helps the algorithm quickly reach new regions 

(exploration). 

b. Egg Laying within a Radius: Each cuckoo lays several eggs (new solutions) within a 

small radius around its current location. If the quality (objective function value) of one of 

these eggs is better than the current nest, it replaces it. 

c. Removal of Old Eggs: With a specified probability (pa), some nests (weak solutions) are 

selected, and their eggs are eliminated. These nests are then replaced with new random 

solutions. This step prevents population stagnation and maintains diversity. 

3. Update Best Solution: The best solution found (the nest with the highest quality) is stored 

throughout the iterations. 

4. Termination Check: If the termination condition (e.g., maximum iterations) is not met, return to 

Stage 2. 

5. Output: Return the best solution found. 

The selection of the COA for this problem was based on a careful review of its advantages and 

capabilities in solving complex, multi-dimensional problems. The most important reason is its Levy 

Flight mechanism, which allows the algorithm to quickly access new regions of the search space and 

avoid becoming trapped in local optima (Singh et al., 2025; Tejani et al., 2024). This feature is crucial 

for the alloy design problem, which has a vast and non-linear search space. Another reason is its 

flexibility and simplicity in integrating with an external objective function. For customization, the 

trained Random Forest model was defined as the objective function, with the primary goal of the 

algorithm being to maximize the output of this model, i.e., the predicted yield strength. Furthermore, a 

customized version of the algorithm was implemented by applying necessary constraints, limiting the 

search space so that the value of each alloying element falls within the permissible ranges found in the 

original database. Additionally, a strict constraint was added to ensure that the sum of the weight 

percentages of all elements in each candidate solution equals exactly 100%. This implemented 

framework enabled the algorithm to effectively search for the optimal alloy composition, providing a 

practical and efficient solution. 

COA Parameters 

In this research, the parameters of the COA were configured, based on project reports and the executed 

code, to create a suitable balance between exploration and exploitation processes and to converge rapidly 

towards the optimal solution. These parameters, determined through experience and trial and error, are 

presented in Table 1. 
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Table 1) Parameters of the Cuckoo Optimization Algorithm (COA) and Their Descriptions 

Parameter Symbol Value Description 

Population Size n_cuckoos 30 Number of initial nests (candidate solutions). 

Maximum 

Iterations 
max_iter 100 

Maximum number of times the main loop of the 

algorithm is executed. 

Levy Step Size step_size 0.02 Determines the magnitude of Levy flight steps. 

Discovery Rate pa 0.20 
Probability that an old, weak nest (egg) will be 

discovered and abandoned. 

Egg Laying Radius egg_laying_radius 0.05 
Radius around each cuckoo where new eggs 

(solutions) are laid. 

Objective Function obj_func - 

The function to be maximized (or minimized). Here, 

the yield strength predicted by the Random Forest 

model. 

Variable Bounds bounds min/max 
Permissible range for each alloying element (e.g., 

min=0, max=20 for Cr). 
 

These settings formed the basis for the algorithm's successful performance in achieving the optimal 

high-yield-strength alloy composition. Notably, the Levy step size (step_size = 0.02) created a suitable 

balance between global search (exploration) and local search (exploitation); longer steps allowed the 

algorithm to quickly discover new regions, while shorter steps aided in refining the search within 

promising areas. 

Software Tools and Execution Environment 

All calculations, modeling, and simulations in this research were performed using Python 3 in the 

Google Colab cloud environment. For data processing, the pandas library was used for reading and 

manipulating the dataset, and the numpy library for numerical computations and array operations. The 

Random Forest Regressor machine learning model was implemented and trained using 

the sklearn.ensemble module from the scikit-learn library. The COA was developed using 

base numpy functions and the gamma function from the math library. Finally, the matplotlib library 

was used for visualizing the results, including the algorithm's convergence plot and the optimal alloy 

composition. 

4) Findings and Discussion 

Performance of the Machine Learning Model 

The Random Forest model, after being trained on 80% of the data, achieved a coefficient of 

determination (R²) of 0.8194 and a MSE of 12445.02 on the test data. These results demonstrate the 

model's ability to learn the non-linear relationship between elemental composition and yield strength. 

To further increase confidence in the model's generalizability, a ten-fold cross-validation was 

performed. The results of this evaluation showed a mean R² of 0.7896, with a standard deviation of 

0.0931, and a mean MSE of 17018.95, with a standard deviation of 7946.30. These results confirmed 

the stability of the model's performance and indicated that its accuracy was not dependent on the random 

partitioning of the data. Figure 2 shows the scatter plot of actual versus predicted values for the test set. 

Finally, the trained model was used as the cost function, which is the core component of the evolutionary 

optimization algorithms. 
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Figure 2) Scatter Plot of Actual vs. Predicted Values for the Test Set From the 

 Random Forest Model 

 

Optimization Results with COA and the Analysis of the Optimal Composition 

The performance of the metaheuristic COA algorithm can be significantly dependent on the values of 

its control parameters, such as step_size and pa. To evaluate the stability and reliability of the proposed 

method, a sensitivity analysis was conducted within a specified range of variations for these parameters. 

As shown in Table 2, the results of this analysis indicate that the algorithm converges to very close and 

stable results within a reasonable range of parameter variations. 

Table 2) Sensitivity Analysis of the Two Parameters pa and Step_Size 

pa step_size Yield Strength (MPa) Convergence Time (seconds) 

0.10 0.01 2455.606 104.94 

0.10 0.02 2458.233 103.44 

0.10 0.05 2457.837 101.04 

0.10 0.10 2451.768 102.14 

0.10 0.20 2452.431 101.80 

0.20 0.01 2452.507 102.93 

0.20 0.02 2452.498 105.50 

0.20 0.05 2452.889 107.00 

0.20 0.10 2452.889 107.12 

0.20 0.20 2452.512 106.86 
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pa step_size Yield Strength (MPa) Convergence Time (seconds) 

0.25 0.01 2452.966 107.79 

0.25 0.02 2453.401 106.08 

0.25 0.05 2451.459 108.69 

0.25 0.10 2451.649 108.23 

0.25 0.20 2453.696 108.34 

0.30 0.01 2453.401 109.10 

0.30 0.02 2451.562 108.22 

0.30 0.05 2454.937 118.83 

0.30 0.10 2455.852 131.22 

0.30 0.20 2451.562 107.78 

0.40 0.01 2452.754 110.31 

0.40 0.02 2450.11 107.55 

0.40 0.05 2444.986 105.35 

0.40 0.10 2452.889 106.08 

0.40 0.20 2450.342 108.87 

 

According to Table 2, the best result from this analysis corresponds to the combination pa = 

0.10 and step_size = 0.02, which achieved a yield strength of 2458.233 MPa. This stability indicates the 

power and reliability of the proposed method for solving this problem and reduces the dependence of 

the results on the precise selection of parameters. To provide a simple analysis of the uncertainty in the 

optimization result, the data from the sensitivity analysis in Table 2 can be used. This analysis indicates 

that the COA algorithm, with different parameter settings, converged to predicted results, ranging from 

2444.99 MPa (minimum) to 2458.22 MPa (maximum). This approximate range of 13.23 MPa serves as 

a simple measure of the stability of the optimal solution against variations in the algorithm's parameters 

and demonstrates the reliability of the proposed method in discovering a robust optimal region. 

Finally, after the sensitivity analysis and selection of the best parameters, the COA algorithm 

was reexecuted and converged after 100 iterations to an optimal composition with a yield strength of 

2456.46 MPa. This value is significantly higher than the maximum value present in the dataset (~2010 

MPa), demonstrating the algorithm's ability to discover compositions beyond the experimental data. 

This optimal composition is presented in Table 3. 
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Table 3) Optimal Steel Alloy Composition Obtained Using the COA Algorithm 

Element Weight Percent (%) Primary Role in Steel Strengthening 

Fe 61.74 Primary solvent (steel matrix). 

Co 11.19 
Stabilizes strengthening phases, increases high-temperature strength and 

hardness. 

Cr 10.61 
Solid solution strengthening, increases corrosion resistance and strength, 

forms Cr carbides. 

Mo 6.04 

Solid solution strengthening, precipitation strengthening via Mo carbides, 

increases high- 

temperature strength. 

W 4.26 
Increases melting point, precipitation strengthening via W carbides, high-

temperature resistance. 

Ti 1.48 Precipitation strengthening (TiC), grain size control, improves toughness. 

Nb 1.40 
Precipitation strengthening (NbC), grain size control, improves 

weldability. 

V 1.13 Precipitation strengthening (VC), increases hardness and wear resistance. 

Si 0.98 
Solid solution strengthening, reduces oxidation, improves corrosion 

resistance. 

Al 0.75 Reduces oxidation, stabilizes nitrogen, increases toughness. 

Mn 0.27 Solid solution strengthening, lowers freezing point, improves weldability. 

C 0.088 Solid solution strengthening, forms carbides, increases hardness. 

N 0.083 Solid solution strengthening, forms nitrides, increases hardness. 

Ni 0.053 Increases toughness, stabilizes austenite, improves corrosion resistance. 

 

This composition clearly shows a strong resemblance to high-speed steel (HSS) alloys and cobalt-

based alloys, which are designed for high-temperature and high-strength applications. The significant 

presence of cobalt and tungsten indicates the algorithm's focus on strengthening mechanisms for high-

temperature resistance. This composition simultaneously employs multiple strengthening mechanisms 

through various elements, leading to the achievement of very high strength. It should be noted that the 

exact optimal composition using full decimal values sums to 100%; however, the sum of weight 

percentages, as presented in Table 3, is 100.074%, which is due to rounding the values to two decimal 

places for the simplicity of presentation and is not a result of model or computational error. 
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Visual Analysis of the Optimal Alloy Composition 

To better understand the distribution of elements in the discovered optimal composition, a chart of the 

optimal steel alloy composition was plotted. This chart (Figure 3) displays the weight percentages of all 

elements in descending order, allowing for quick and visual comparison of the amount of each element. 

Figure 3) Optimal Steel Alloy Composition Chart (Sorted By Weight Percentage) 

 

 

Figure 3 clearly shows that iron (Fe) at 61.74% acts as the primary element, while the significant 

presence of alloying elements such as cobalt (Co), chromium (Cr), molybdenum (Mo), and tungsten 

(W) played a vital role in achieving high strength. This visual distribution confirms and complements 

the numerical findings presented in Table 3. 

Convergence Plot of the COA Algorithm 

The convergence plot (Figure 4) shows the trend of yield strength improvement over 100 iterations. In 

the initial iterations (0 to 40), rapid improvement in yield strength occurred, indicating the exploration 

phase of the algorithm using Lévy flight. This movement enables the algorithm to quickly move away 

from the initial region and reach areas with higher potential in the search space. After iteration 80, the 

curve flattens approximately and reaches 2456.46 MPa. This indicates entering the exploitation phase 

and convergence to a global or near-global optimum point. The relative stability in the final iterations 

indicates the reliability of the optimization result. 

Figure 4) Convergence Plot of the COA Algorithm Over 100 Iterations, Showing the Trend of 

Optimal Yield Strength Improvement 
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Performance Comparison of COA with Other Methods 

The proposed method was also compared with other machine learning and evolutionary algorithms, with 

the results presented in Table 4. It should be noted that all algorithms were executed in the same Google 

Colab environment with constant hardware specifications, the same number of iterations (100), and 

standard parameters for each method. 

Table 4) Performance Comparison of the COA Algorithm with Other Optimization Methods in 

Steel Alloy Design 

Criterion 

Proposed 

Method 

(COA + RF) 

Zhao et al. 

(2023) (PSO 

+ ML) 

Wang et al. 

(2018) (PSO 

+ ANN) 

Agrawal & 

Choudhary (2016) 

(NSGA-II + SVM) 

Optimization 

Algorithm 
COA PSO PSO NSGA-II 

Prediction 

Model 
Random Forest ML Model(s) ANN SVM 

Optimization 

Goal 

Maximize 

Yield Strength 

Maximize 

Strength 

Maximize 

Strength 

Multi-objective 

(Strength, Cost) 

Maximum 

Strength (MPa) 
2456.46 ~2390 ~2400 ~2420 

Model Accuracy 

(R²) 
0.8194 ~0.77 ~0.78 ~0.80 

Computational 

Time (s) 
~30 ~50 ~45 ~90 

Key Elements 

Identified 
Co, Cr, Mo, W Cr, Ni, Mo, V Cr, Mo, V Cr, Mo, W, Co 

 

As Table 4 presents, the method proposed in this research outperformed similar methods in terms 

of optimized strength and model accuracy. The high convergence speed of COA also makes it a suitable 

choice for rapid optimization problems. This comparison highlights the superiority of the specific 
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combination of COA and Random Forest for this particular problem. Furthermore, the low 

computational time of the COA algorithm (approximately 30 seconds), reported in Table 4, indicates 

the high efficiency of this algorithm for the given optimization problem. This efficiency is due to its 

effective search mechanism, particularly the use of Lévy flight. 

5) Cunclusion 
 

The design of steel alloys with outstanding mechanical properties, particularly high yield strength, has 

always been a central challenge in materials engineering and advanced industries. Traditional design 

methods, reliant on trial and error, and empirical knowledge, are costly, time-consuming, and often fail 

to reach optimal solutions. This research presented a two-stage framework for designing steel alloys 

with maximized yield strength. In the first stage, a Random Forest model was trained using an 

experimental dataset, demonstrating significant accuracy in predicting yield strength based on alloy 

elemental composition. In the second stage, this model was connected as a cost function to the COA to 

explore the vast space of possible compositions. The results showed that the COA algorithm converged 

after 100 iterations to a composition with a yield strength of 2456.46 MPa, which is significantly higher 

than the maximum value present in the original database. 

The strength of this proposed approach lies in the intelligent combination of two key components. 

First, the Random Forest model, utilizing ensemble learning mechanisms, bootstrap sampling, and 

random feature selection, prevents overfitting and exhibits a high capability in modeling complex non-

linear relationships between elemental composition and mechanical properties. Second, the COA 

optimization algorithm, using Lévy flight, possesses a high capacity for exploring the search space and 

avoids becoming trapped in local optima. 

The most significant limitation of this study is the lack of experimental validation of the proposed 

optimal composition. Furthermore, due to the nature of experimental dataset, where the percentages of 

key elements such as Cobalt (Co), Niobium (Nb), and Titanium (Ti) are low in most samples, the model's 

generalizability to the discovered optimal region remains a challenge. However, the obtained results are 

consistent with metallurgical strengthening principles. Without physically manufacturing and testing a 

sample, it cannot be definitively claimed that this composition is producible, stable, and practical in the 

real world. Therefore, the results of this research should be considered as a powerful and intelligent 

guide for subsequent laboratory investigations, not as a substitute for experimentation. We strongly 

believe that collaboration with metallurgical laboratories for prototype fabrication and conducting 

mechanical and microstructural tests would be an essential and highly valuable step for the ultimate 

validation of these findings. 

Additionally, this research has shortcomings that should be addressed in future research. Extending 

the model for multi-objective optimization (e.g., simultaneous maximization of strength and toughness 

and the minimization of cost) could increase the practical value of the research. Furthermore, evaluating 

more advanced models, such as deep neural networks, other machine learning models like XGBoost, 

and employing hybrid optimization algorithms (e.g., COA combined with local search) could contribute 

to improved prediction accuracy and convergence speed. 
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