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Designing steel alloys with superior mechanical properties, particularly
high yield strength, is a central challenge in materials engineering.
Traditional trial-and-error methods are often unable to find optimal
solutions due to their high cost and time consumption. To overcome
these limitations, this research introduces a two-stage intelligent
framework that significantly accelerates the alloy design process by
combining machine learning and metaheuristic optimization. In the first
stage, a Random Forest model was trained on experimental data,
demonstrating notable performance in predicting yield strength with a
coefficient of determination (R?) of 0/8194 and a Mean Squared Error
(MSE) of 12445/02. In the second stage, this model was used as a cost
function for the Cuckoo Optimization Algorithm (COA) to discover the
optimal alloy composition. After 100 iterations, the COA algorithm
converged to a composition with a yield strength of 2456/46 MPa, which
is the highest value reported in the studied dataset. This optimal
composition contained significant amounts of key elements, such as
Cobalt (11/19%), Chromium (10/61%), Molybdenum (6/04%), and
Tungsten (4/26%), which are consistent with strengthening mechanisms
like solid solution strengthening and carbide precipitation. The results
demonstrate that the combination of machine learning and metaheuristic
optimization is a powerful and efficient approach for discovering novel
alloys with desired properties, which can drastically accelerate the
materials development cycle.
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1) Introduction

The steel industry, as the backbone of the global economy, has consistently pursued the production of
products with superior mechanical properties, lower cost, and higher efficiency. Among these, yield
strength stands out as one of the most crucial criteria for evaluating structural performance, playing a
decisive role in material design and selection for critical applications (Dieter & Bacon, 1988). An increase
in yield strength signifies a material's enhanced ability to withstand greater stress before undergoing
permanent deformation, directly contributing to improved safety, durability, and weight reduction of
structures (Callister & Rethwisch, 2018). For instance, in the aerospace industry, the use of high-strength
steel alloys enables the design of lighter and more efficient airframes and engines (Reed, 20006).

Traditional alloy design methods, grounded in empirical knowledge, metallurgical experimentation,
and trial-and-error approaches, face significant challenges. These methods not only demand considerable
time and financial resources but also often fail to achieve optimal solutions due to the non-linear and
multivariate complexity of the relationships between elemental composition and final properties (Ashby,
2013). These limitations underscore the growing need for novel and intelligent approaches.

In recent decades, materials informatics and artificial intelligence have brought about
transformative changes in the field of materials development (Agrawal & Choudhary, 2016). By
leveraging machine learning algorithms, these approaches can learn complex, non-linear patterns from
vast datasets of experimental and simulation results. Machine learning can act as a rapid and cost-
effective surrogate model, predicting mechanical properties in a fraction of a second—a task that might
take weeks through physical experimentation (Mehta & Mannan, 2019). Accordingly, an effective
strategy involves integrating predictive machine learning models with metaheuristic optimization
algorithms (Hassani et al., 2020). In this framework, the machine learning model maps the response
space between composition and mechanical properties, and the optimization algorithm, acting as an
intelligent explorer, searches this learned space for compositions that deliver the most desirable
properties (Ramprasad & Kim, 2017).

The primary innovation of this research is the introduction of a two-stage intelligent framework for
designing steel alloys with maximized yield strength. In the first stage, a Random Forest machine
learning model, chosen for its strong capability in handling non-linear data and outliers, serves as an
accurate predictive model. In the second stage, this trained model is integrated as the objective function
into the COA. This algorithm, renowned for its use of Lévy flight, exhibits a superior capacity for global
exploration and identifying optimal points within complex search spaces (Yang & Deb, 2009). The
ultimate goal is to provide an intelligent and efficient solution to overcome the challenges of traditional
alloy design and to establish a generalizable framework for future research in this domain.

This paper is organized as follows: Section 2 reviews the relevant research background and
literature. Section 3 details the research methodology, including the dataset, machine learning model,
and optimization framework. Section 4 presents, discusses, and analyzes the findings and results.
Finally, Section 5 provides the conclusion, summarizing key insights and suggesting directions for
future work.

2) Literature Review

Data-driven materials design has evolved into a dynamic and rapidly growing field, achieving maturity
in recent years thanks to the increased accessibility of large databases and significant advancements in
machine learning algorithms (Rajan, 2005). In an influential review paper, Agrawal and Choudhary
(2016) highlighted the pivotal role of machine learning in accelerating the discovery of new materials,
introducing it as a novel paradigm in materials science.

In the context of predicting steel properties, various models have been employed. Wang et al. (2018)
utilized Artificial Neural Networks (ANN) to predict the yield strength of structural steels,
demonstrating their ability to model complex non-linear relationships. However, due to challenges such
as overfitting and the need for large datasets, tree-based models have gained greater popularity. In his
seminal paper, Breiman (2001) introduced Random Forests, showing that this method creates a robust
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and resilient model by aggregating numerous weak decision trees, resulting in excellent performance
for predicting material properties. Consequently, this research employs the Random Forest model as the
primary predictive tool.

To address optimization problems, numerous metaheuristic algorithms have been developed. The
Particle Swarm Optimization (PSO) algorithm has been applied to alloy composition design, yielding
promising results (Zhao et al., 2023). Similarly, in studies related to stainless steel, PSO has been used
to model the effect of oxide compounds on the weld properties of 304L steel (Djoudjou et al., 2021).
Despite PSO's efficiency in local search, it can sometimes suffer from premature convergence and
become trapped in local optima (Rajwar et al., 2023; Zhou et al., 2024).

Beyond PSO, Genetic Algorithms (GA) have also been extensively used (Goldberg, 1989), but their
convergence rate can be slow. To overcome these limitations, more novel algorithms have been introduced.

The COA, proposed by Rajabioun (2011), is inspired by the brood parasitism behavior of cuckoos.
Its defining feature is the use of Lévy Flight, which grants it a superior capability for global exploration
and helps prevent entrapment in local optima. Several studies have also shown that COA outperforms
algorithms such as PSO and GA in complex optimization problems (Gandomi & Yang, 2011). This
capability has made it an attractive choice for emerging applications. For instance, Tejani et al. (2024)
developed a multi-objective version of COA for structural optimization. Furthermore, Genc and
Kalimbetova (2024) demonstrated the successful application of COA in designing intelligent
controllers, indicating its ability to solve real-world engineering problems.

Alongside data-driven approaches, classical metallurgical knowledge continues to play a vital role
in understanding the strengthening mechanisms of alloys. Elements such as Chromium (Cr) and Nickel
(Ni) (Leslie, 1981), Molybdenum (Mo) and Vanadium (V) (Bhadeshia, 2015), Tungsten (W) (Totten &
Howes, 1995), and Cobalt (Co) (Reed, 2006) each contribute to increased strength through specific
mechanisms like solid solution strengthening or carbide precipitation.

The present research aims to bridge these two domains by seeking to discover an elemental
combination that maximizes yield strength. By integrating the predictive power of the Random Forest
model with the global search capability of the COA algorithm, this approach is more comprehensive
than previous studies, offering an efficient framework for the design of advanced alloys.

3) Methodology
This section details the dataset, algorithms, and proposed methodology used in this research.

Dataset and Preprocessing

The present study is based on an experimental dataset named "steel strength.csv," containing 2,469
samples, sourced from the Kaggle platform. This dataset encompasses various alloy compositions and
their corresponding ultimate steel strength. The input variables consist of the weight percentages of
Carbon (C), Manganese (Mn), Silicon (Si), Chromium (Cr), Nickel (Ni), Molybdenum (Mo), Vanadium
(V), Nitrogen (N), Niobium (Nb), Cobalt (Co), Tungsten (W), Aluminum (Al), Titanium (T1), and Iron
(Fe). The target variable is the Yield Strength in Megapascals (MPa). However, it is important to note
that this dataset, like many experimental datasets, has inherent limitations. A thorough examination
reveals that the percentage of certain elements, such as Niobium (Nb), Titanium (Ti), and Cobalt (Co),
is near zero in a significant portion of the samples. While manageable for model training, this may limit
the model's ability to make accurate predictions for optimal compositions that include higher
percentages of these elements. Furthermore, the compositional range covered by the dataset represents
only a subset of the vast space of steel alloys. These limitations impact the model's generalizability to
compositions outside the training data range, indicating that for future research, collecting more
comprehensive and diverse data is essential for building a more robust and practical model.

Following data collection, the first step was data preparation. The following preprocessing steps
were applied to the dataset:

e Replacing missing values with zero.
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e Converting column names to lowercase for code compatibility.

e Extracting the minimum and maximum range for each element from the existing data to be
used as optimization constraints.

Machine Learning Model
In this study, a Random Forest Regressor was used as a powerful and robust machine learning algorithm
for predicting steel yield strength. This model, implemented from the scikit-learn library, is an ensemble
learning method based on decision trees. By aggregating the results of a large number of weak decision
trees, it mitigates overfitting and demonstrates a high capability in modeling complex, non-linear
relationships between features (Chehreh & Sarabadani, 2023; Salman et al., 2024). Its core mechanism
involves two key techniques: bootstrap sampling (sampling with replacement) and random feature
selection at each node for splitting, which significantly enhance the model's stability and accuracy (Niazi
& Razavi, 2024; Tapio, 2025).

To determine the optimal parameters for the Random Forest model, a five-fold cross-validation
method was employed. This process aimed to achieve an optimal balance between model performance
and computational time. Key model parameters, including the number of trees and the maximum
allowed depth for each tree, were systematically examined within a specified range. During the cross-
validation process, the parameter combination resulting in the lowest MSE was selected as the final
model parameters. This approach ensures that the model's performance is not limited to the training data
and that it retains the ability to make accurate predictions on new data. The main model parameters set
for this research are as follows:

e n_estimators=100: The number of trees in the forest.

e max_depth=10: The maximum allowed depth for each tree, set to control model
complexity and prevent overfitting.

e random_state=42: To ensure result reproducibility and experiment replicability.

Finally, after parameter tuning, the Random Forest model was trained using 80% of the data as the
training set. The model's performance was evaluated on the remaining 20% (test set) using the
coefficient of determination (R?) and MSE metrics to assess its efficiency in predicting yield strength.
To increase confidence in the model's generalizability, a ten-fold cross-validation was also performed.
The trained model was then used as the cost function, which is the core component of the evolutionary
optimization algorithm.

Cuckoo Optimization Algorithm (COA)

The Cuckoo Optimization Algorithm (COA) is a metaheuristic algorithm inspired by the natural brood
parasitic behavior of cuckoo birds, proposed by Rajabioun in 2011. Utilizing three main concepts of
mutation, egg laying within a radius, and the elimination of old eggs, this algorithm possesses a high
capability for global exploration and discovering optimal points in complex search spaces. The
flowchart of the COA algorithm steps is presented in Figure 1.

Figure 1) Flowchart of the Cuckoo Optimization Algorithm (COA) Steps
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Flowchart of the Cuckoo Optimization Algorithm (COA)
"for Steel Alloy Composition Optimization"

Quality of New Egg »
Quality of Current Nest?

Apply Levy Flight to

Update Global Best Remove OLd Eggs with
b Prabability pa

The algorithm consists of five main stages:

1. Initialization: Generate an initial population of nests. Each nest represents a potential solution
to the optimization problem (in this project, a steel alloy composition).

2. Main Loop (for a specified number of iterations):

a. Levy Flight Mutation: Each cuckoo (nest) moves in the search space using a random
walk with long step lengths. This movement helps the algorithm quickly reach new regions
(exploration).

b. Egg Laying within a Radius: Each cuckoo lays several eggs (new solutions) within a
small radius around its current location. If the quality (objective function value) of one of
these eggs is  better than the current nest, it replaces it.
c. Removal of Old Eggs: With a specified probability (pa), some nests (weak solutions) are
selected, and their eggs are eliminated. These nests are then replaced with new random
solutions. This step prevents population stagnation and maintains diversity.

3. Update Best Solution: The best solution found (the nest with the highest quality) is stored
throughout the iterations.

4. Termination Check: If the termination condition (e.g., maximum iterations) is not met, return to
Stage 2.

5. Output: Return the best solution found.

The selection of the COA for this problem was based on a careful review of its advantages and
capabilities in solving complex, multi-dimensional problems. The most important reason is its Levy
Flight mechanism, which allows the algorithm to quickly access new regions of the search space and
avoid becoming trapped in local optima (Singh et al., 2025; Tejani et al., 2024). This feature is crucial
for the alloy design problem, which has a vast and non-linear search space. Another reason is its
flexibility and simplicity in integrating with an external objective function. For customization, the
trained Random Forest model was defined as the objective function, with the primary goal of the
algorithm being to maximize the output of this model, i.e., the predicted yield strength. Furthermore, a
customized version of the algorithm was implemented by applying necessary constraints, limiting the
search space so that the value of each alloying element falls within the permissible ranges found in the
original database. Additionally, a strict constraint was added to ensure that the sum of the weight
percentages of all elements in each candidate solution equals exactly 100%. This implemented
framework enabled the algorithm to effectively search for the optimal alloy composition, providing a
practical and efficient solution.

COA Parameters

In this research, the parameters of the COA were configured, based on project reports and the executed
code, to create a suitable balance between exploration and exploitation processes and to converge rapidly
towards the optimal solution. These parameters, determined through experience and trial and error, are
presented in Table 1.
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Table 1) Parameters of the Cuckoo Optimization Algorithm (COA) and Their Descriptions

Parameter Symbol Value Description
Population Size n_cuckoos 30 Number of initial nests (candidate solutions).
Maximum . Maximum number of times the main loop of the
. max_iter 100 . .
Iterations - algorithm is executed.

Levy Step Size step_size 0.02 Determines the magnitude of Levy flight steps.
Probability that an old, weak nest (egg) will be
discovered and abandoned.

Radius around each cuckoo where new eggs
(solutions) are laid.
The function to be maximized (or minimized). Here,
Objective Function obj func - the yield strength predicted by the Random Forest
model.
Permissible range for each alloying element (e.g.,
min=0, max=20 for Cr).

Discovery Rate pa 0.20

Egg Laying Radius | egg laying radius 0.05

Variable Bounds bounds min/max

These settings formed the basis for the algorithm's successful performance in achieving the optimal
high-yield-strength alloy composition. Notably, the Levy step size (step_size = 0.02) created a suitable
balance between global search (exploration) and local search (exploitation); longer steps allowed the
algorithm to quickly discover new regions, while shorter steps aided in refining the search within
promising areas.

Software Tools and Execution Environment

All calculations, modeling, and simulations in this research were performed using Python 3 in the
Google Colab cloud environment. For data processing, the pandas library was used for reading and
manipulating the dataset, and the numpy library for numerical computations and array operations. The
Random Forest Regressor machine learning model was implemented and trained using
the sklearn.ensemble module from the scikit-learn library. The COA was developed using
base numpy functions and the gamma function from the math library. Finally, the matplotlib library
was used for visualizing the results, including the algorithm's convergence plot and the optimal alloy
composition.

4) Findings and Discussion

Performance of the Machine Learning Model

The Random Forest model, after being trained on 80% of the data, achieved a coefficient of
determination (R?) of 0.8194 and a MSE of 12445.02 on the test data. These results demonstrate the
model's ability to learn the non-linear relationship between elemental composition and yield strength.
To further increase confidence in the model's generalizability, a ten-fold cross-validation was
performed. The results of this evaluation showed a mean R? of 0.7896, with a standard deviation of
0.0931, and a mean MSE of 17018.95, with a standard deviation of 7946.30. These results confirmed
the stability of the model's performance and indicated that its accuracy was not dependent on the random
partitioning of the data. Figure 2 shows the scatter plot of actual versus predicted values for the test set.
Finally, the trained model was used as the cost function, which is the core component of the evolutionary
optimization algorithms.
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Figure 2) Scatter Plot of Actual vs. Predicted Values for the Test Set From the
Random Forest Model
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Optimization Results with COA and the Analysis of the Optimal Composition

The performance of the metaheuristic COA algorithm can be significantly dependent on the values of
its control parameters, such as step size and pa. To evaluate the stability and reliability of the proposed
method, a sensitivity analysis was conducted within a specified range of variations for these parameters.
As shown in Table 2, the results of this analysis indicate that the algorithm converges to very close and
stable results within a reasonable range of parameter variations.

Table 2) Sensitivity Analysis of the Two Parameters pa and Step_Size

pa step_size Yield Strength (MPa) Convergence Time (seconds)
0.10 0.01 2455.606 104.94
0.10 0.02 2458.233 103.44
0.10 0.05 2457.837 101.04
0.10 0.10 2451.768 102.14
0.10 0.20 2452431 101.80
0.20 0.01 2452.507 102.93
0.20 0.02 2452.498 105.50
0.20 0.05 2452.889 107.00
0.20 0.10 2452.889 107.12
0.20 0.20 2452.512 106.86
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pa step_size Yield Strength (MPa) Convergence Time (seconds)
0.25 0.01 2452.966 107.79
0.25 0.02 2453.401 106.08
0.25 0.05 2451.459 108.69
0.25 0.10 2451.649 108.23
0.25 0.20 2453.696 108.34
0.30 0.01 2453.401 109.10
0.30 0.02 2451.562 108.22
0.30 0.05 2454.937 118.83
0.30 0.10 2455.852 131.22
0.30 0.20 2451.562 107.78
0.40 0.01 2452.754 110.31
0.40 0.02 2450.11 107.55
0.40 0.05 2444986 105.35
0.40 0.10 2452.889 106.08
0.40 0.20 2450.342 108.87

According to Table 2, the best result from this analysis corresponds to the combination pa =
0.10 and step_size = 0.02, which achieved a yield strength of 2458.233 MPa. This stability indicates the
power and reliability of the proposed method for solving this problem and reduces the dependence of
the results on the precise selection of parameters. To provide a simple analysis of the uncertainty in the
optimization result, the data from the sensitivity analysis in Table 2 can be used. This analysis indicates
that the COA algorithm, with different parameter settings, converged to predicted results, ranging from
2444.99 MPa (minimum) to 2458.22 MPa (maximum). This approximate range of 13.23 MPa serves as
a simple measure of the stability of the optimal solution against variations in the algorithm's parameters
and demonstrates the reliability of the proposed method in discovering a robust optimal region.

Finally, after the sensitivity analysis and selection of the best parameters, the COA algorithm
was reexecuted and converged after 100 iterations to an optimal composition with a yield strength of
2456.46 MPa. This value is significantly higher than the maximum value present in the dataset (~2010
MPa), demonstrating the algorithm's ability to discover compositions beyond the experimental data.
This optimal composition is presented in Table 3.
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Table 3) Optimal Steel Alloy Composition Obtained Using the COA Algorithm
Element Weight Percent (%) Primary Role in Steel Strengthening
Fe 61.74 Primary solvent (steel matrix).
Stabilizes strengthening phases, increases high-temperature strength and
Co 11.19
hardness.
Solid solution strengthening, increases corrosion resistance and strength,
Cr 10.61 .
forms Cr carbides.
Solid solution strengthening, precipitation strengthening via Mo carbides,
Mo 6.04 increases high-
temperature strength.
w 496 Increases melting point, precipitation strengthening via W carbides, high-
) temperature resistance.
Ti 1.48 Precipitation strengthening (TiC), grain size control, improves toughness.
Precipitation strengthening (NbC), grain size control, improves
Nb 1.40 2
weldability.
A" 1.13 Precipitation strengthening (VC), increases hardness and wear resistance.
Si 0.98 Solid solution strengthening, reduces oxidation, improves corrosion
' resistance.
Al 0.75 Reduces oxidation, stabilizes nitrogen, increases toughness.
Mn 0.27 Solid solution strengthening, lowers freezing point, improves weldability.
C 0.088 Solid solution strengthening, forms carbides, increases hardness.
N 0.083 Solid solution strengthening, forms nitrides, increases hardness.
Ni 0.053 Increases toughness, stabilizes austenite, improves corrosion resistance.

This composition clearly shows a strong resemblance to high-speed steel (HSS) alloys and cobalt-
based alloys, which are designed for high-temperature and high-strength applications. The significant
presence of cobalt and tungsten indicates the algorithm's focus on strengthening mechanisms for high-
temperature resistance. This composition simultaneously employs multiple strengthening mechanisms
through various elements, leading to the achievement of very high strength. It should be noted that the
exact optimal composition using full decimal values sums to 100%; however, the sum of weight
percentages, as presented in Table 3, is 100.074%, which is due to rounding the values to two decimal
places for the simplicity of presentation and is not a result of model or computational error.
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Visual Analysis of the Optimal Alloy Composition

To better understand the distribution of elements in the discovered optimal composition, a chart of the
optimal steel alloy composition was plotted. This chart (Figure 3) displays the weight percentages of all
elements in descending order, allowing for quick and visual comparison of the amount of each element.

Figure 3) Optimal Steel Alloy Composition Chart (Sorted By Weight Percentage)

Optimal steel alloy composition (sorted)

Mass percentage(%)

Fe = o mo w ti b v si al mn
element

Figure 3 clearly shows that iron (Fe) at 61.74% acts as the primary element, while the significant
presence of alloying elements such as cobalt (Co), chromium (Cr), molybdenum (Mo), and tungsten
(W) played a vital role in achieving high strength. This visual distribution confirms and complements
the numerical findings presented in Table 3.

Convergence Plot of the COA Algorithm

The convergence plot (Figure 4) shows the trend of yield strength improvement over 100 iterations. In
the initial iterations (0 to 40), rapid improvement in yield strength occurred, indicating the exploration
phase of the algorithm using Lévy flight. This movement enables the algorithm to quickly move away
from the initial region and reach areas with higher potential in the search space. After iteration 80, the
curve flattens approximately and reaches 2456.46 MPa. This indicates entering the exploitation phase
and convergence to a global or near-global optimum point. The relative stability in the final iterations
indicates the reliability of the optimization result.

Figure 4) Convergence Plot of the COA Algorithm Over 100 Iterations, Showing the Trend of
Optimal Yield Strength Improvement
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COA algorithm convergence graph
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Performance Comparison of COA with Other Methods

The proposed method was also compared with other machine learning and evolutionary algorithms, with
the results presented in Table 4. It should be noted that all algorithms were executed in the same Google

Colab environment with constant hardware specifications, the same number of iterations (100), and
standard parameters for each method.

Table 4) Performance Comparison of the COA Algorithm with Other Optimization Methods in

Steel Alloy Design
Proposed Zhao et al. Wang et al. Agrawal &
Criterion Method (2023) (PSO (2018) (PSO Choudhary (2016)
(COA +RF) + ML) + ANN) (NSGA-II + SVM)
Optimization COA PSO PSO NSGA-II
Algorithm
Prediction
Random Forest ML Model(s) ANN SVM
Model
Optimization Maximize Maximize Maximize Multi-objective
Goal Yield Strength Strength Strength (Strength, Cost)
Maximum 2456.46 ~2390 ~2400 ~2420
Strength (MPa) ’
Model Accuracy 0.8194 ~0.77 ~0.78 ~0.80
(R?)
Computatlonal 30 50 45 ~90
Time (s)
Key Elements Co,Cr,Mo,W | Cr,Ni, Mo,V Ct, Mo, V Cr, Mo, W, Co
Identified

As Table 4 presents, the method proposed in this research outperformed similar methods in terms
of optimized strength and model accuracy. The high convergence speed of COA also makes it a suitable
choice for rapid optimization problems. This comparison highlights the superiority of the specific
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combination of COA and Random Forest for this particular problem. Furthermore, the low
computational time of the COA algorithm (approximately 30 seconds), reported in Table 4, indicates
the high efficiency of this algorithm for the given optimization problem. This efficiency is due to its
effective search mechanism, particularly the use of Lévy flight.

5) Cunclusion

The design of steel alloys with outstanding mechanical properties, particularly high yield strength, has
always been a central challenge in materials engineering and advanced industries. Traditional design
methods, reliant on trial and error, and empirical knowledge, are costly, time-consuming, and often fail
to reach optimal solutions. This research presented a two-stage framework for designing steel alloys
with maximized yield strength. In the first stage, a Random Forest model was trained using an
experimental dataset, demonstrating significant accuracy in predicting yield strength based on alloy
elemental composition. In the second stage, this model was connected as a cost function to the COA to
explore the vast space of possible compositions. The results showed that the COA algorithm converged
after 100 iterations to a composition with a yield strength of 2456.46 MPa, which is significantly higher
than the maximum value present in the original database.

The strength of this proposed approach lies in the intelligent combination of two key components.
First, the Random Forest model, utilizing ensemble learning mechanisms, bootstrap sampling, and
random feature selection, prevents overfitting and exhibits a high capability in modeling complex non-
linear relationships between elemental composition and mechanical properties. Second, the COA
optimization algorithm, using Lévy flight, possesses a high capacity for exploring the search space and
avoids becoming trapped in local optima.

The most significant limitation of this study is the lack of experimental validation of the proposed
optimal composition. Furthermore, due to the nature of experimental dataset, where the percentages of
key elements such as Cobalt (Co), Niobium (Nb), and Titanium (T1) are low in most samples, the model's
generalizability to the discovered optimal region remains a challenge. However, the obtained results are
consistent with metallurgical strengthening principles. Without physically manufacturing and testing a
sample, it cannot be definitively claimed that this composition is producible, stable, and practical in the
real world. Therefore, the results of this research should be considered as a powerful and intelligent
guide for subsequent laboratory investigations, not as a substitute for experimentation. We strongly
believe that collaboration with metallurgical laboratories for prototype fabrication and conducting
mechanical and microstructural tests would be an essential and highly valuable step for the ultimate
validation of these findings.

Additionally, this research has shortcomings that should be addressed in future research. Extending
the model for multi-objective optimization (e.g., simultaneous maximization of strength and toughness
and the minimization of cost) could increase the practical value of the research. Furthermore, evaluating
more advanced models, such as deep neural networks, other machine learning models like XGBoost,
and employing hybrid optimization algorithms (e.g., COA combined with local search) could contribute
to improved prediction accuracy and convergence speed.
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