Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 160–172). Springer.
https://doi.org/10.1007/978-3-642-37456-2_14
Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 132–149).
Chen, K., Zhang, P., Yan, H., Chen, G., Sun, T., Lu, Q., Chen, Y., & Shi, H. (2024). A review of machine learning in additive manufacturing: Design and process.
The International Journal of Advanced Manufacturing Technology, 135(3), 1051–1087.
https://doi.org/10.1007/s00170-024-13094-w
Combe, D., Largeron, C., Géry, M. & Egyed-Zsigmond, E., )2015, October (. I-louvain: An attributed graph clustering method. In International Symposium On Intelligent Data Analysis (pp. 181-192). Springer International Publishing.
Dollmann, M.M., )2023(. Graph Clustering: A comparison of Louvain and Leiden. In Conf. Ser (Vol. 2129, p. 012028).
Ghousi, R. (2015). Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures. Journal of Industrial and Systems Engineering, 8(3), 59-76.
Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: A review.
Journal of Manufacturing Science and Engineering, 128(4), 969–976.
https://doi.org/10.1115/1.2194554
Kampezidou, S. I., Ray, A. T., Bhat, A. P., Fischer, O. J. P., & Mavris, D. N. (2024). Fundamental components and principles of supervised machine learning workflows with numerical and categorical data.
Eng, 5(1), 384–416.
https://doi.org/10.3390/eng5010021
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis. John Wiley & Sons.
Khadivar, A., & Mojibian, F. (2022). Workshops clustering using a combination approach of data mining and MCDM. Modern Researches in Decision Making, 7(2), 1–20.
Liu, J., & Han, J. (2018). Spectral clustering. In Data clustering (pp. 177–200). Chapman and Hall/CRC.
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set.
Psychometrika, 50(2), 159–179.
https://doi.org/10.1007/BF02294245
Molaee Fard, R. (2023). Provide a method to diagnose and optimize diabetes using data mining methods and firefly algorithm. Engineering Management and Soft Computing, 9(1), 36-48. https://doi.org/10.22091/JEMSC.2022.6575.1147
Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14, 849–856.
Niavand, M., Adibi, M. A., & Pourghader Chobar, A. (2024). Selection of green supplier by multi-moora combination method and two-stage clustering. Engineering Management and Soft Computing, 10(1), 14-49. https://doi.org/10.22091/jemsc.2024.10977.1181
Pakzad, A., Vahdani, M., & Khoran, M. (2024). Personalization of sampling and standard inspection based on data mining. In
The 10th International Conference on Industrial Engineering and Systems. Mashhad, Iran.
https://civilica.com/doc/2119451
Rahimi, F., Kamranrad, R., & Zarei, A. (2022). Design of integrated clustering-association data mining model to study the electricity consumption behavior of industrial units. Iranian Journal of Energy, 25(3), 65–78.
Sheikh Shoaee, H. (2021). A review of machine learning and data mining in the manufacturing industry. In The 2nd National Conference on Management and Tourism Industry. Tehran, Iran.
Song, H., Li, C., Fu, Y., Li, R., Zhang, H., & Wang, G. (2023). A two-stage unsupervised approach for surface anomaly detection in wire and arc additive manufacturing.
Computers in Industry, 151, 103994.
https://doi.org/10.1016/j.compind.2023.103994
Suman, S., & Das, A. (2020). Fuzzy clustering-based process-monitoring strategy for a multistage manufacturing facility. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2018 (pp. 459-469). Springer Singapore.
Tran, T.-H., Cao, T.-D., & Tran, T.-T.-H. (2021). HDBSCAN: Evaluating the performance of hierarchical clustering for big data. In
Soft computing: Biomedical and related applications (pp. 273–283). Springer.
https://doi.org/10.1007/978-3-030-73103-8_20
Wang, Y., Chen, Q., Kang, C., & Xia, Q. (2016). Clustering of electricity consumption behavior dynamics toward big data applications.
IEEE Transactions on Smart Grid, 7(5), 2437–2447.
https://doi.org/10.1109/TSG.2016.2548565
Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In International Conference on Machine Learning (pp. 478–487). PMLR.
Younespour, M. S., & Romoozi, M. (2023). wireless sensor network clustering based on label propagation algorithm. Engineering Management and Soft Computing, 8(2), 16-29.
Zidek, K., Maxim, V., Pitel, J., & Hosovsky, A. (2016). Embedded vision equipment of industrial robot for inline detection of product errors by clustering–classification algorithms.
International Journal of Advanced Robotic Systems, 13(5), 1–14.
https://doi.org/10.1177/1729881416664901
Send comment about this article