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1) Introduction 

As technology continues to advance and every facet of life becomes increasingly digitalized, a vast 

amount of data is being produced. The smart handling of this information can be crucial for societal 

progress and assist in tackling major issues, such as poverty, illness, and disparity (Jacobs, 2009). Data 

represents one of the most important assets for a company, and for cutting-edge firms, handling large 

datasets is a key concern for maintaining competitiveness (Harding et al., 2006). Effective data 

management can not only set companies apart from their competitors but also provide a competitive 

edge. Organizations that employ data-driven decision-making strategies tend to outshine their 

competitors, indicating an average increase of 5% in productivity, and 6% in profitability (McAfee et 

al., 2012). Nonetheless, regrettably, even with an awareness of their data’s value, numerous companies 

frequently do not possess the essential knowledge to utilize it effectively, lacking a clear grasp of what 

metrics should be evaluated. As a result, the data’s informational value and its useful, actionable insights 

are diminished (Harding et al., 2006). Consequently, enhancing the gathering, utilization, and 

distribution of data has become essential for numerous businesses (Kusiak, 2017). 

Machine learning (ML) is a sector of artificial intelligence (AI) that emphasizes enhancing 

computer system performance by learning directly from input data, significantly contributing to 

fulfilling many of today’s requirements. At present, ML is well-known for its capacity to uncover 

concealed patterns and attributes in data and to learn from these insights, being employed in various 

data-intensive fields, such as industry, banking, insurance, healthcare, and retail (Molaee Fard, 2023; 

Niavand et al., 2024; Younespour & Romoozi, 2023). The main objective of machine learning is to 

create algorithms and models that allow computer systems to learn from data and make predictions and 

decisions when dealing with extensive and complex datasets (Chen et al., 2024). The key strategies in 

machine learning can be divided into two main types: supervised learning and unsupervised learning 

(Dogan & Birant, 2020). Supervised learning entails employing labeled training datasets to create a 

model that learns the relationship between inputs and outputs. This model aims to acquire a generalized 

mapping from data samples, enabling it to generate accurate predictions for new data (Kampezidou et 

al., 2024). In comparison, unsupervised learning uses unlabeled training data, requiring the model to 

identify the underlying structure, patterns, and relationships present in the data without labels (Song et 

al., 2023). 

A frequent issue in unsupervised learning is clustering, which seeks to gather alike data points so 

that samples in the same cluster show the highest similarity to each other while preserving the greatest 

dissimilarity from samples in different clusters. Major clustering methods can be organized into five 

categories. Partitioning  clustering methods attempt to decompose the data into 𝑘 clusters such that items 

in each cluster are closely  related to each other. Hierarchical clustering methods construct a tree of 

clusters by either repeatedly  merging smaller clusters into larger ones (agglomerative), or by splitting 

larger clusters into smaller ones  (divisive). Density-based clustering methods aim to find high-density 

clusters separated by sparse areas that  clusters can differ in terms of their size and shape. Additionally, 

there are alternative approaches known as grid-based and model-based methods (Dogan & Birant, 2020). 

2. Literature Review 

Currently, the extensive adoption of information and communication technology in various sectors has 

led to a considerable rise in the production of industrial data (Raptis et al., 2019). The information 

gathered from different sensors and control systems can enhance performance and facilitate improved 

decision-making in various industries. Through the examination of this data, one can recognize issues, 

anticipate equipment breakdowns, enhance product quality, and refine production processes (Dogan & 

Birant, 2020). For instance, in 2016, Zidek et al. (2016) proposed a machine learning-driven approach 

to improve quality control on production lines by utilizing machine vision technology integrated into 

robots for image capture and defect identification. This technique utilizes K-means clustering, 
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hierarchical clustering (FLANN1), and density-based spatial clustering (DBSCAN) algorithms to group 

product defects into various clusters, and subsequently employs six distinct classification methods to 

allocate each new defect to one of these clusters. This allows for the automatic identification of the 

defect type and enables the implementation of required corrective measures.  Wang et al. (2017) 

introduced an innovative approach for examining and grouping extensive electricity usage data. Initially, 

they utilized symbolic aggregate approximation (SAX) to condense the extensive amount of electricity 

usage data, subsequently applying a Markov model to mimic the shifts in customer electricity usage 

patterns over time. Using a density-based clustering algorithm, customers were then divided into 

uniform groups to deliver personalized services. In aother study, a novel approach for examining 

electricity usage trends in industries was presented. This research combined K-Means clustering 

methods with association rules to categorize industrial units situated in an industrial park in Tehran 

province into low, medium, and high-consumption clusters based on their electricity consumption. 

Concealed trends in the data of each cluster were recognized, assisting industries in improving their 

energy use and cutting expenses (Rahimi et al., 2022). In a 2022 study conducted by Khadivar and 

Mojibian (2022), the significance of different factors in clustering was initially established using the 

analytic hierarchy process (AHP). Subsequently, applying K-Means and Kohonen neural network 

algorithms, industrial workshops were categorized into four primary clusters. This categorization relied 

on elements such as population distribution, income status, and value-added, helping managers create 

customized development initiatives for every category of workshops. 

In the research conducted by Sheikh Shoaee (2021), a comprehensive review of two decades of 

machine learning research in the field of production examined the application of these approaches across 

four main areas: planning, monitoring, quality, and failure prediction. This study analyzed methods 

based on tasks (clustering, classification, regression), types of learning, and evaluation metrics, while 

also explaining the stages of knowledge discovery and benefits, and identifying challenges and future 

research directions. In the study conducted by Ghousi (2015), Ghousi employed data mining techniques 

to examine large datasets related to industrial accidents. The findings revealed that a significant portion 

of these incidents pertained to two main groups of workers: young workers aged 20 to 25, with a high 

school diploma and less than two years of work experience, and workers with 3 to 8 years of work 

experience and education levels below high school diploma. The research by Suman and Das (2020) 

proposed a  data-driven approach for monitoring and fault diagnosis of multi-stage processes by 

combining fuzzy clustering and multi-block principal component analysis. This approach, without 

requiring prior process knowledge, categorizes variables into homogeneous blocks and identifies 

abnormal conditions. Its evaluation in a steel manufacturing facility demonstrated that this approach, in 

addition to accurately diagnosing faults and determining the contribution of each variable to their 

occurrence, reduces dependence on process knowledge and increases detection accuracy, thereby 

showing potential for broad applicability in complex industries to improve quality and reduce risk. 

Grouping industrial facilities within a province acts as a tactical approach for economic and 

industrial progress. By recognizing clusters of production units with common traits, a better 

comprehension of the province’s industrial framework can be attained. This enables more focused and 

efficient planning, resulting in better resource allocation, enhanced industrial collaboration, the creation 

of value chains, improved competitiveness, and sustainable progress. In other terms, the grouping of 

production units offers a guide for the province’s industrial expansion and advancement. 

The North Khorasan Provincial Department of Standards, as the representative of the Iranian 

National Standards Organization in the province, is responsible for supervising the quality of 

domestically produced and imported goods and services. This department provides a wide range of 

services to manufacturers, importers, and consumers, using technical knowledge, advanced laboratory 

equipment, and specialized personnel. Through the SINA system, this entity has access to valuable data, 

including sampling results, test outcomes, inspection reports, non-conformities, and negative scores of 

production units, and utilizes data mining techniques to identify hidden patterns and optimize 

supervision processes. In research conducted by Pakzad et al. (2024), production units were clustered 
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based on their qualitative attributes and performance characteristics utilizing clustering and multi-

criteria decision-making methods. This has enabled the customization of inspection programs, ensuring 

that higher-risk units receive more targeted and regular oversight. This method not only enhances the 

quality of produced goods and increase consumer satisfaction but also results in lower monitoring 

expenses for the organization. Previous research in the field of personalizing sampling and inspection 

processes has largely been limited to partitional clustering algorithms such as K-means and K-medoids. 

Although these algorithms are practical in many cases, they may have limitations when dealing with the 

complexity of industrial data and identifying irregularly shaped clusters. Therefore, the present study 

aims to achieve more accurate clustering and an in-depth assessment of various techniques by exploring 

a wide range of clustering algorithms. Gaussian mixture models (GMM), spectral Clustering based on 

Laplacian matrix analysis, hierarchical density-based spatial clustering of applications with noise 

(HDBSCAN) for identifying clusters with varying density, DEC based on learning latent features, and 

the Louvain algorithm for detecting graph structures have been selected as representatives of statistical, 

graph-based, density-based, and deep learning approaches. These algorithms, due to their capability in 

identifying complex clusters and robustness to noise, facilitate the selection of an optimal method for 

the studied data. Moreover, by comparing the results from these algorithms with previous studies, more 

precise and comprehensive results in clustering production units can be achieved. 

In the following sections of this study, the clustering techniques employed are described. 

Subsequently, Section 4 outlines the proposed research methodology. Section 5 presents the case study 

and the findings derived from applying the proposed model. Finally, the concluding section provides 

the results and outlines directions for future research. 

3. Clustering Algorithms 

Clustering is a key method in unsupervised learning, performed with the aim of grouping similar data 

into separate sets. This technique enables the discovery of hidden structures in data without the need for 

labeling. In the following subsections, five state-of-the-art clustering techniques, including Spectral 

Clustering, HDBSCAN, GMM, Louvain, and DEC, will be examined. 

3-1 Spectral Clustering 

Spectral Clustering is a sophisticated method employed in machine learning and graph theory for 

grouping data points into clusters based on the eigenvalues and eigenvectors derived from a similarity 

matrix. This technique utilizes the spectrum of the graph Laplacian to uncover cluster structures within 

the data. Unlike traditional clustering methods, such as K-means, which predominantly depend on 

distance-based criteria, spectral Clustering focuses on analyzing the global structure of the data. This 

characteristic renders it especially effective for datasets where clusters may not conform to spherical or 

convex shapes. The fundamental principle of this algorithm is to leverage the graph Laplacian to capture 

the inherent structure within the data, facilitating a more flexible and accurate clustering process (Ng et 

al., 2001). Despite its effectiveness across a diverse array of applications, spectral Clustering is not 

without its limitations. One significant challenge lies in the computational complexity associated with 

eigenvalue decomposition, particularly when dealing with large-scale datasets. Furthermore, the 

performance of spectral Clustering is highly contingent upon the selection of the similarity graph and 

the formulation of the graph Laplacian. The quality of the resultant clusters can vary considerably based 

on how well the graph encapsulates the underlying structure of the data. For example, if the graph is 

excessively sparse or if the similarity function is inappropriately selected, the algorithm may struggle to 

yield meaningful clustering outcomes (von Luxburg, 2007). 

The theory of spectral Clustering is rooted in graph analysis and the characteristics of the Laplacian 

matrix. In this approach, the first step involves constructing a similarity graph among the data points, 

after which the spectral properties of the graph Laplacian are utilized to carry out the clustering process. 

The inputs for the spectral Clustering algorithm comprise a dataset with n data samples and the target 

number of clusters k. The output consists of cluster labels assigned to each individual data point. The 

procedure of the algorithm is outlined as follows: 
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Step 1: Construction of the Similarity Graph 

In the first step, a graph G = (V, E) is constructed, where  V represents the set of data points and E 

denotes the edges that encode the similarity relationships among these points. Typically, the similarity 

between two data points 𝑥𝑖 and 𝑥𝑗 is computed using a similarity function, such as the Gaussian (radial 

basis function) kernel, as illustrated in Equation (1) (Ng et al., 2001): 

𝑆(𝑥𝑖, 𝑥𝑗) = exp (
−‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
)                                                                                                          (1) 

Here, 𝜎 is a tuning parameter that regulates the scale of the distance. A smaller value of 𝜎 results 

in high similarity only among very close data points, while a larger value of 𝜎 allows for similarities 

between points that are farther apart. The function 𝑒𝑥𝑝() represents the exponential function, which 

maps the similarity values to the interval (0, 1]. This means that similarities approach one for points that 

are close together while decrease toward zero as the distance between the points increases. 

Step 2: Computation of the Graph Laplacian Matrix 

1-Computation of the degree matrix D 2-Computation of one of the variants of the graph Laplacian 

matrix. The degree matrix D is a diagonal matrix, with each diagonal element representing the sum of 

the similarity values found in the i-th row of the similarity matrix S. This relationship is expressed 

mathematically in Equation (2) (Liu & Han, 2008): 

𝐷𝑖𝑖 = ∑ 𝑆𝑖𝑗

𝑗

                                                                                                                                          (2) 

Subsequently, the Laplacian matrix L is constructed in one of three forms: the unnormalized 

Laplacian, given by  𝐿 = 𝑆 − 𝐷 ; the symmetric normalized Laplacian, represented as 𝐿𝑠𝑦𝑚 = 𝐼 −

𝐷𝑆−
1

2𝐷−
1

2; and the random-walk normalized Laplacian, expressed as 𝐿𝑟𝑤 = 𝐼 − 𝑆𝐷−1. 

Step 3: Computation of Eigenvectors 

After constructing the Laplacian matrix, the next step is to perform eigenvalue decomposition. The 

eigenvalues and eigenvectors of the Laplacian matrix characterize the structural properties of the graph. 

Eigenvectors associated with eigenvalues smaller than a given threshold typically correspond to the 

natural groupings of the data. In practice, the first k eigenvectors are commonly used for dimensionality 

reduction, where k denotes the number of clusters. Accordingly, the third step consists of the following 

two stages (Liu & Han, 2008): 

• Computation of the k eigenvectors corresponding to the smallest eigenvalues of the 

Laplacian matrix. 

• Construction of the feature matrix U consisting of the k eigenvectors arranged as 𝑈 =
[𝑢1, 𝑢2, … , 𝑢𝑘]. 

Step 4: Application of K-Means Clustering 

 After performing eigenvalue decomposition in Step 3, the data points are mapped into a new feature 

space, where each point is represented as a feature vector based on the selected eigenvectors. A 

clustering algorithm, such as K-means, is then applied to these representations to identify the clusters. 

Consequently, Step 4 involves the following stages (Liu & Han, 2008): 

1. Treat each row of U as a new feature vector representing the corresponding data point. 

2. Apply the K-means algorithm to the rows of  U in order to cluster the data. 

3. Assign each data point to the nearest cluster center. 

3-2 HDBSCAN Clustering 

The HDBSCAN algorithm is an advanced extension of the DBSCAN algorithm that combines density-

based clustering with hierarchical methods. It clusters data based on density, addressing the limitations 

of DBSCAN, which requires fixed values for both the minimum number of points in a neighborhood 
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and the radius parameter  𝜀. HDBSCAN employs hierarchical density estimation to identify clusters with 

varying densities. By converting the dataset into a density-connected graph, it extracts stable clusters 

through hierarchical analysis, resulting in higher accuracy in detecting heterogeneous clusters. This 

algorithm effectively identifies clusters with differing densities without the need to predefine 𝜀 

(Campello et al., 2013). 

One of the key concepts in HDBSCAN is the elimination of the 𝜀 parameter, coupled with the use 

of a density-connected graph. This approach relies on a minimum spanning tree (MST) for clustering. 

Initially, a complete graph of the data points is constructed, with edge weights assigned based on the 

pairwise distances between points. By progressively removing edges according to density, a hierarchical 

cluster tree is formed, where points with higher density occupy higher levels. This process enables the 

algorithm to accurately identify clusters with irregular shapes and varying densities. Another important 

feature of HDBSCAN is its ability to automatically detect noise. Unlike DBSCAN, which classifies 

points as noise only when their local density falls below the minimum neighborhood threshold, 

HDBSCAN employs a cluster stability measure to inform its decisions. This measure evaluates the 

stability of each cluster across different hierarchical levels and designates points with low stability 

values as noise (McInnes et al., 2017).  

One of the major advantages of HDBSCAN over other methods is its ability to handle high-

dimensional data and its applicability across a wide range of real-world scenarios. The algorithm has 

been utilized in financial market analysis, medical image processing, and large-scale data clustering in 

big data systems. Research by Tran et al. (2021) demonstrated that HDBSCAN can effectively analyze 

datasets with dense and complex features, allowing for the identification of clusters with nonlinear 

structures. 

In conclusion, HDBSCAN is regarded as one of the most powerful density-based clustering 

algorithms due to its elimination of the sensitive  𝜀 parameter, its hierarchical clustering capabilities, 

automatic noise detection, and high accuracy in identifying complex structures. Compared to methods 

such as K-means and DBSCAN, it offers greater flexibility in detecting non-uniform clusters and 

minimizes the need for manual tuning of critical parameters (Tran et al. 2021). The following outlines 

the steps of the HDBSCAN clustering algorithm: 

Step 1: Definition of Mutual Reachability Distance 

A key component of HDBSCAN is the definition of the mutual reachability distance between data 

points. This distance is defined in Equation (3): 

𝑑𝑚𝑢𝑡𝑢𝑎𝑙(𝑝, 𝑞) = 𝑚𝑎𝑥{𝑐𝑜𝑟𝑒𝑘(𝑝), 𝑐𝑜𝑟𝑒𝑘(𝑞), 𝑑(𝑝, 𝑞)}                                                                      (3) 

where: 

• d(p,q) is the Euclidean distance between two points p and q. 

• 𝑐𝑜𝑟𝑒𝑘(𝑝) is the core distance of point p, defined as the distance to its k-th nearest neighbor. 

The mutual reachability distance 𝑑𝑚𝑢𝑡𝑢𝑎𝑙(𝑝, 𝑞) ensures that the edges between points in the graph 

are weighted according to the estimated local density.  

Step 2: Construction of the Minimum Spanning Tree (MST) and Density Hierarchy 

 In this step, a fully connected weighted graph is created using the mutual reachability distance. 

From this graph, the minimum spanning tree (MST) is extracted, which serves to connect the data points 

effectively. By systematically lowering the density threshold and eliminating low-density edges, a 

hierarchy of density-based clusters is developed. 

Step 3: Extraction of Clusters Based on Stability 

 In this step, clusters showing the highest density stability across the hierarchical levels are 

identified. The stability measure of a cluster C is defined as follows: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶) = ∑(𝜆𝑚𝑖𝑛(𝑝) − 𝜆𝑚𝑎𝑥(𝑝)

𝑝∈𝐶

)                                                                                        (4) 
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Here, λ =
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 represents the inverse of the distance, reflecting the local density. λ𝑚𝑎𝑥(𝑝) 

denotes the maximum density level at which the point p is present, while λ𝑚𝑖𝑛(𝑝)  represents the 

minimum density level at which point p still remains in the cluster. Clusters with higher stability values 

are retained in the final results, whereas points with low stability are classified as noise or outliers. 

Theoretical Advantages of HDBSCAN over DBSCAN 

 1. No Requirement to Specify 𝜺: Unlike DBSCAN, which necessitates the explicit selection of 

the 𝜀 threshold, HDBSCAN autonomously discovers clusters with varying densities without the need 

for manual parameter tuning.  

2. Improved Noise Handling: In HDBSCAN, noise points are identified based on cluster stability 

rather than solely relying on absolute density criteria. 

 3. Detection of Complex Clusters: HDBSCAN is proficient in identifying irregularly shaped 

clusters with different density levels, especially in large and noisy datasets (Campello et al., 2013). 

3-3 Deep Embedded Clustering (DEC) 

Deep Embedded Clustering (DEC) is a machine learning approach specifically designed to cluster data 

by utilizing deep neural networks. The primary objective of this algorithm is to learn a meaningful latent 

representation of the data, where similar samples are mapped closer together in the new feature space, 

while dissimilar samples are pushed further apart. DEC begins by employing a deep neural network to 

perform nonlinear dimensionality reduction. It then iteratively refines these latent features to enhance 

clustering performance using the K-means algorithm. This method is particularly well-suited for 

complex and high-dimensional data that traditional clustering techniques might struggle to handle 

effectively (Caron et al., 2018). 

One of the distinguishing characteristics of the DEC clustering algorithm is its capacity to 

simultaneously perform data clustering and representation learning. The process begins with training a 

deep neural network to compress the data, followed by an initial clustering step. Afterward, the 

algorithm starts an optimization process that progressively refines the data representations, drawing 

similar data points closer together in the feature space while pushing dissimilar points further apart. This 

iterative refinement not only enhances clustering accuracy but also reduces model complexity (Guo et 

al., 2017). Another notable characteristic of DEC clustering is its effectiveness in handling complex, 

high-dimensional data, such as images and textual information. In contrast to traditional methods, which 

often struggle with high-dimensional and intricate datasets, DEC utilizes the representational power of 

deep neural networks to automatically learn discriminative features in conjunction with the clustering 

process. This capability allows DEC to achieve superior performance compared to conventional 

approaches, such as K-means (Caron et al., 2018). The DEC clustering algorithm is frequently utilized 

alongside autoencoder-based neural networks to learn nonlinear representations of data. These 

autoencoders facilitate DEC in mapping the input data into a lower-dimensional feature space while 

preserving essential information. This process results in a significant enhancement in clustering 

performance for complex datasets and is especially effective in applications such as image processing 

and other high-dimensional data domains (Xie et al., 2016). 

In conclusion, the DEC clustering algorithm offers notable advantages over other clustering 

methods, such as K-means or Hidden Markov Model (HMM) based approaches. DEC is capable of 

automatically optimizing feature representations for each cluster and adapting its performance to the 

intrinsic characteristics of the data. This flexibility allows it to be effectively applied across a wide range 

of domains, including image processing, natural language processing, and medical data analysis, where 

it often delivers superior results compared to traditional methods (Guo et al., 2017). This algorithm is 

specifically developed for high-dimensional and complex datasets, simultaneously performing optimal 

clustering and representation learning. Rather than depending on predefined features, it autonomously 

learns discriminative features tailored for clustering tasks. In this framework, a deep neural network is 

initially trained to compress data into a latent feature space, after which clustering is applied. 
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Importantly, these two stages are executed concurrently through a unified optimization process (Caron 

et al., 2018). 

In DEC clustering, a nonlinear representation of the data is first learned using a neural network 

known as an autoencoder. The dataset is denoted as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where each 𝑥𝑖 is a data point 

in a d-dimensional space. These data points are then mapped into a new latent feature space 𝑍 =
{𝑧1, 𝑧2, … , 𝑧𝑁} through a transformation function 𝑓𝜃(𝑥), which effectively compresses complex features. 

This operation is modeled as shown in Equation (5): 

𝑓𝜃(𝑥𝑖) = 𝑧𝑖                                                                                                                                                 (5) 

Here, 𝑓𝜃 denotes a neural network whose parameters are optimized using the training data. This 

network is responsible for transforming the data into a new latent space that is well-suited for clustering 

tasks (Guo et al., 2017). 

After this stage, clustering is carried out using an optimization algorithm that integrates K-means 

clustering with a tailored cost function. The primary objective is to minimize the distance between 

similar data points while maximizing the separation between dissimilar ones. To accomplish this, a loss 

function J is utilized, which is optimized through K-means clustering in conjunction with various 

regularization terms to enhance the distribution of data points within the latent feature space. 

Specifically, the loss function is defined as follows: 

𝐽 = ∑‖𝑧𝑖 − 𝜇𝑐𝑖‖
2

𝑁

𝑖=1

                                                                                                                                 (6) 

where 𝜇𝑐𝑖
 denotes the centroid of the cluster to which data point 𝑥𝑖 is assigned, and 𝑐𝑖 represents 

the corresponding cluster label (Caron et al., 2018).  In the subsequent stage, to further enhance data 

representations and clustering performance, the DEC algorithm utilizes an optimization strategy known 

as soft assignment. In this process, each data point is not only assigned to its nearest cluster but the 

probability of its membership in each cluster is also computed. To determine this probability, a function 

𝑝𝑖𝑗 is employed, quantifying the likelihood that data point 𝑧𝑖 belongs to cluster j, as defined in Equation 

(7): 

𝑝𝑖𝑗 =
exp (−

‖𝑧𝑖 − 𝜇𝑗‖
2

𝜏 )

∑ exp (−
‖𝑧𝑖 − 𝜇𝑗‖

2

𝜏 )𝐾
𝑘=1

                                                                                                           (7) 

where 𝜇𝑗  denotes the centroid of cluster j, and 𝜏  is a temperature or tuning parameter that is 

typically adjusted during the optimization process (Caron et al., 2018(. Finally, to further refine the 

neural network and enhance clustering performance, the DEC algorithm applies the backpropagation 

algorithm. During this phase, the neural network parameters are iteratively updated so that both 

clustering effectiveness and the quality of learned feature representations in the latent space are 

simultaneously optimized. This iterative process continues until convergence is achieved (Guo et al., 

2017). Through these stages and optimization procedures, DEC is able to efficiently cluster complex, 

high-dimensional data and to consistently outperform traditional clustering methods.  

3-4 Gaussian Mixture Model (GMM) 

A Gaussian Mixture Model (GMM) is a parametric probability density function that is formulated as a 

weighted sum of multiple Gaussian component densities. GMMs are widely employed as parametric 

models to represent the probability distribution of continuous measurements or features. The parameters 

of a GMM are typically estimated from training data using the iterative Expectation  Maximization (EM) 

algorithm or through Maximum A Posteriori (MAP) estimation based on a trained prior model. 

Specifically, a GMM comprises a weighted sum of M Gaussian component densities, as represented in 

Equation (8): 
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𝑝(𝑥|𝜆) = ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖, 𝛴𝑖)

𝑀

𝑖=1

                                                                                                                  (8) 

where x is a continuous-valued data vector with D  dimensions, representing the number of features. 

The terms 𝑤𝑖 for 𝑖 = 1, … , 𝑀 denote the mixture weights, while 𝑔(x|𝜇𝑖 , Σ𝑖) for 𝑖 = 1, … , 𝑀 represent 

the component Gaussian densities. Each component density corresponds to a D  dimensional multivariate 

Gaussian distribution, which is defined as shown in Equation (9): 

𝑝(𝑥|𝜆) = ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖, 𝛴𝑖)

𝑀

𝑖=1

                                                                                                                  (9) 

where 𝜇𝑖 is the mean vector, and Σ𝑖 is the covariance matrix of the i-th Gaussian component. The 

mixture weights satisfy the constraint ∑ 𝑤𝑖
𝑀
𝑖=1 = 1 . The complete Gaussian mixture model is 

parameterized by the set of mean vectors, covariance matrices, and mixture weights for all component 

densities. These parameters are collectively denoted as λ = {𝑤𝑖, 𝜇𝑖 , Σ𝑖} for 𝑖 = 1, … , 𝑀. The choice of 

model configuration,  including the number of components, whether to use full or diagonal covariance 

matrices, and the extent of parameter sharing,  is typically determined by the amount of available data 

for estimating the GMM parameters and the specific application context in which the GMM is employed. 

Although GMM is fundamentally a statistical framework for modeling the probability density of 

continuous data, it can also be effectively utilized for clustering tasks. In this setting, each Gaussian 

component is interpreted as a distinct cluster, and data points are assigned to these components based 

on maximum likelihood estimation. Specifically, after fitting the GMM to the data, the probability that 

each data point belongs to each Gaussian component is calculated, enabling the assignment of cluster 

labels according to these probability distributions.  Unlike algorithms such as K-means, which perform 

hard clustering by assigning each data point exclusively to a single cluster, GMM-based clustering 

employs a soft assignment approach. This means that the membership probability of each data point to 

all clusters is determined, allowing for more nuanced and flexible clustering results. As a result, GMM 

is particularly advantageous in scenarios where the data exhibits complex structures or substantial 

overlap between clusters, providing superior performance compared to traditional clustering methods 

(Reynolds, 2015). 

3-5 Louvain Algorithm 

The Louvain algorithm is a graph-based clustering technique designed to maximize the modularity Q of 

a given partition P. It utilizes a greedy optimization strategy and is recognized as one of the most widely 

adopted algorithms for graph clustering. Modularity serves as a metric to assess the quality of a 

network’s division into clusters by comparing the density of edges within clusters to those between 

clusters. The primary objective of the Louvain algorithm is to identify a partition that achieves the 

highest possible modularity. The algorithm operates on an undirected graph G = (V, E), which may 

include self-loops and multiple edges between node pairs. Edge weights can be specified; if omitted, all 

edges are assigned a default weight of one. A significant advantage of the Louvain algorithm is that it 

does not require the number of clusters to be specified in advance, making it suitable for applications 

where the internal structure of the graph is unknown. The clusters detected by the Louvain algorithm 

are organized hierarchically, enabling users to investigate each cluster at multiple levels of granularity. 

This hierarchical structure facilitates the discovery of meaningful substructures within clusters that may 

not be evident at the top level of partitioning (Combe et al., 2015). 

The overall procedure for implementing the Louvain algorithm is as follows: 

1. Initialization with Singleton Partitioning: Each node is initially placed in its own individual 

cluster. 

2. Iterative Optimization: Repeat the following steps until no substantial increase in 

modularity is observed or the improvement falls below a predefined threshold: 
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a) Modularity Optimization Sequence (MOS): For each node, identify the cluster 

transfer that produces the greatest increase in modularity and move the node 

accordingly. This step embodies the greedy optimization core of the algorithm. 

b) Community Aggregation Sequence (CAS): Using the clusters obtained from the 

MOS step, construct a new graph in which each cluster is represented as a single 

node. This aggregation step forms the basis of the hierarchical clustering structure 

characteristic of the Louvain algorithm. 

3. Return the Resulting Clustering of the Graph. 

Through this iterative process, the Louvain algorithm is capable of detecting meaningful clusters at 

both the global network level and within local substructures (Dollmann, 2023). 

3-6 Clustering Evaluation Metrics 

3-6-1 Davies-Bouldin Index (DBI) 

An important metric for simultaneously assessing clustering quality evaluates the compactness of 

clusters and the degree of separation between them. This index is computed based on the average ratio 

of within-cluster dispersion to between-cluster distances. Lower values of this metric indicate superior 

clustering performance, as they correspond to clusters that are both more compact and better separated 

from one another. The general formula for this metric is presented in Equation (10): 

𝐷𝐵𝐼 =
1

𝑁
∑ max

𝑗≠𝑖
(
𝜎𝑖 + 𝜎𝑗

𝑑𝑖𝑗
)

𝑁

𝑖=1

                                                                                                             (10) 

where 𝜎𝑖 represents the average distance of points within cluster i to its centroid, 𝑑𝑖𝑗 denotes the 

distance between the centroids of clusters i and j, and N is the total number of clusters (Davies & 

Bouldin, 2009).  A key advantage of the Davis-Bouldin index is that it does not require labeled data, 

making it suitable for evaluating unsupervised clustering results. However, this metric has certain 

limitations. For example, when clusters have irregular shapes or significantly different densities, the 

index may not accurately reflect clustering quality. Therefore, the Davis-Bouldin index is often used 

alongside other evaluation metrics, such as the Silhouette score and the Calinski-Harabasz index, to 

provide a more comprehensive assessment of clustering performance (Halkidi et al., 2001). 

3-6-2 Average Silhouette Score 

The Silhouette score is one of the most widely used metrics for evaluating clustering quality, as it 

simultaneously captures both cluster compactness and separation. This score is calculated for each data 

point in the dataset, and the average of these values provides the overall clustering performance. The 

Silhouette value ranges from +1 to -1. A value close to +1 indicates well-clustered points (i.e., points 

are close to their own cluster and distant from other clusters), a value near 0 suggests overlapping 

clusters, and values approaching -1 indicate that points may have been assigned to the wrong clusters. 

The formula for calculating the Silhouette score is presented in Equation (11): 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
                                                                                                                     (11) 

where 𝑎(𝑖) is the average distance of sample i to all other points within the same cluster (intra-

cluster distance), and 𝑏(𝑖) is the average distance of sample i to the points in the nearest neighboring 

cluster (inter-cluster distance) (Rousseeuw, 1987). 

An important advantage of the Silhouette score is that it does not require labeled data, making it 

particularly suitable for evaluating unsupervised clustering algorithms. Additionally, the Silhouette 

score facilitates graphical analysis, enabling a more detailed assessment of the quality of individual 

clusters. However, the metric is sensitive to clusters with irregular shapes or varying densities, which 

can affect its reliability. Therefore, it is advisable to use the Silhouette score in conjunction with other 
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evaluation metrics, such as the Davis-Bouldin index and the Calinski-Harabasz index, to achieve a more 

comprehensive and accurate evaluation of clustering quality (Kaufman & Rousseeuw, 2009). 

3-6-3 Calinski-Harabasz Index 

The Calinski-Harabasz index, also referred to as the variance ratio criterion, is a widely adopted metric 

for assessing clustering quality. It is calculated as the ratio of between-cluster dispersion (the variance 

among cluster centroids) to within-cluster dispersion (the variance of points within each cluster). A 

higher Calinski-Harabasz index signifies superior clustering performance, indicating that clusters are 

well separated and data points are tightly grouped around their respective centroids. The formula for 

this index is provided in Equation (12): 

𝐶𝐻 =
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
×

𝑁 − 𝑘

𝑘 − 1
                                                                                                                      (12) 

where N is the total number of samples, and K is the number of clusters. 𝑇𝑟(𝐵𝑘) denotes the total 

between-cluster dispersion, and 𝑇𝑟(𝑊𝑘)  represents the total within-cluster dispersion (Caliński & 

Harabasz, 1974). 

A notable advantage of the Calinski-Harabasz index is its capability to automatically suggest the 

optimal number of clusters. This is achieved by calculating the index for various values of k, producing 

the highest Calinski-Harabasz score being selected as the optimal number of clusters. However, the 

accuracy of this metric may be reduced when clusters have irregular shapes or differing densities. 

Therefore, it is advisable to use the Calinski-Harabasz index alongside other evaluation metrics, such as 

the Silhouette score and the Davis-Bouldin index, to obtain a more robust and reliable assessment of 

clustering quality (Milligan & Cooper, 1985). 

4. Research Methodology 

This study was conducted with the aim of proposing a novel approach to clustering production units, 

particularly those under the supervision of the North Khorasan Provincial Administration of the National 

Standards Organization, to enhance and customize the processes of sampling and inspection. The main 

stages of the proposed approach are as follows: 

1. Structural analysis and the Collection of Relevant Data on Production Units: The 

proposed method was implemented on data from production units extracted from the SINA 

system of the North Khorasan Provincial Administration. In this stage, by utilizing the data 

available in the SINA system and consulting with domain experts, a database comprising 

active production units was constructed. The database included variables such as “Industry 

Type,” “Industry Classification (Small, Medium, Large),” “Number of Quality Control 

Managers,” “Highest Education Level of Quality Control Manager,” “Number of 

Manufactured Products,” “City of the Production Unit’s Location,” and “Average Total 

Negative Score of the Production Unit for the period 2015-2023.” 

2. Data preprocessing: In this stage, the raw data was refined through operations including 

replacing missing values, transforming categorical variables, and normalizing numerical 

values. 

3. Clustering of production units clustering: Five clustering algorithms  )Spectral 

Clustering, HDBSCAN, GMM, Louvain, and DEC( were implemented and executed under 

various scenarios, using all features and by removing less important features. 

4. Evaluation of clustering performance and the selection of the superior clustering 

method: The performance of the clustering algorithms was assessed and compared using 

standard clustering evaluation metrics, including the Davies-Bouldin Index, average 

Silhouette score, and Calinski-Harabasz Index. The best clustering method was then 

identified. 

5. Cluster labeling and interpretation: The resulting clusters were labeled, and a content-

based analysis of the clusters was conducted to interpret the findings. 
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5. Case Study 

In this study, performance data from 217 active production units supervised by the Khorasan Shomali 

Provincial Standards Office between 2015 and 2023 were collected from the SINA system. These units 

represented a wide array of industrial sectors, including food and agriculture, textiles and leather, 

packaging and cellulose, chemical industries, automotive and powertrain, electrical and electronics, 

biomedical engineering, construction and mining, weights and measures, safety, health, energy and 

environment, mechanical metallurgy, and precious metals.  Following preliminary data analysis and 

consultation with experts from the Khorasan Shomali Standards Office, seven variables were initially 

selected for clustering these units (as detailed in Table 1). However, findings from a previous study 

(Pakzad et al., 2024) suggested that excluding the variable “industry type” and incorporating the relative 

importance of different industries in calculating the seventh variable, “the average negative score of 

production units from 2015 to 2023” led to improved clustering results. Consequently, in the present 

study, the annual negative scores of each production unit were multiplied by industry-specific weights 

derived from the Best–Worst method described by Pakzad et al. (2024). The weighted average of these 

scores over the 2015–2023 period was then computed, and exponential smoothing with a smoothing 

coefficient of 𝜆 = 0.2 was applied to obtain the final negative performance index for each unit. As a 

result, the final dataset used for clustering consisted of 217 records (production units) and six clustering 

variables. To gain deeper insights into the performance structure of these units, five advanced clustering 

algorithms were employed: Spectral Clustering, HDBSCAN, GMM, Louvain, and DEC. For 

comparison with the previous study which utilized variable weighting based on information gain, the 

current study also performed clustering using variable weights determined by the same information gain 

criterion. This approach facilitated a direct comparison of cluster structures and outcomes with those 

reported in the prior study. All data analyses were conducted using Excel, RapidMiner, and Python. 

Table 1) Clustering Variables for Production Units 

No. Variable Description Type 

1 Industry type Food and agriculture, …, services Nominal 

2 Industry classification Small, Medium, Large Nominal 

3 Number of quality control managers 1, 2, … Numeric 

4 
Highest education level of quality control 

managers 

Diploma, Associate degree, …, 

PhD 
Nominal 

5 Number of products produced 1, 2, … Numeric 

6 City of the Production Unit’s Location 
Distance of the unit’s city from 

Bojnord (km) 
Numeric 

7 
Average total negative score of the production 

unit (2015–2023) 
– Numeric 

5-1) Data Preprocessing 

In the dataset utilized for this study, certain observations contained missing values. To address this, the 

“Replace Missing Values” operator in RapidMiner was employed to ensure data integrity and minimize 

potential bias in the analysis. By configuring the operator to use the “mean” method, missing values 

were automatically estimated and replaced with the mean of the respective variable.  Following this, the 

“Nominal to Numerical” operator was used to convert categorical variables into numerical values 

suitable for further analysis. As the next step in the data preprocessing workflow, the “Normalization” 

operator was applied to scale all variables. Given the numerical nature of the dataset, range 

normalization was performed to rescale the data within the [0, 1] interval. All data preprocessing 

procedures were carried out using RapidMiner. 

5-2 Clustering of Production Units 

In this study, following data preparation, five clustering algorithms, Spectral Clustering, HDBSCAN, 

GMM, Louvain, and DEC, were employed to categorize the production units into five clusters. The 

selection of five clusters was guided by expert judgment from the North Khorasan Provincial Standards 



13                                                                                                Engineering Management and Soft Computing, Vol. 12, no.1, 2026 

 

 

Office to ensure that the results would be interpretable and practically valuable for tailoring 

standardization processes. To facilitate comparison with a previous study (Pakzad et al., 2024), the same 

information gain-based weighting approach was adopted. In this framework, the variable “Production 

Unit Code” served as the target, and the weight of each variable was determined according to its 

influence on this target (see Table 2, first row for results). The clustering was conducted under six 

different scenarios, which are detailed in Table 2. In the initial scenario, all six variables, including 

industry classification, number of quality control managers, the highest education level of quality control 

managers, number of products produced, city of production unit location, and average negative score of 

the production unit from 2015 to 2023, were included with their respective calculated weights. In 

subsequent scenarios, variables with lower weights were systematically excluded. This strategy enabled 

the evaluation of dimensionality reduction effects on clustering quality and allowed for a structured 

comparison of the results with those of the previous study. 

Table 2) Variables Used Along with Their Weights in Different Clustering Scenarios 

Scenario 
Industry 

Classification 

Number of 

Quality 

Control 

Managers 

Highest 

Education 

Level of 

Quality 

Control 

Managers 

Number of 

Products 

Produced 

City of 

Production 

unit’s 

location 

Average 

Negative Score 

of Production 

Unit (2015–

2023) 

1 0.289 0.428 0.626 0.957 0.971 1 

2     0.428 0.626 0.957 0.971 1 

3         0.626 0.957 0.971 1 

4             0.957 0.971 1 

5                 0.971 1 

6                     1 

It is important to note that for the Spectral Clustering, HDBSCAN, GMM, and Louvain algorithms, 

all six scenarios outlined in Table 2 were evaluated. In contrast, due to the unique characteristics of the 

DEC algorithm  which relies on learning optimal data representations through a neural network, only the 

first scenario (involving all variables) was considered. By nonlinearly transforming the data into a lower-

dimensional space, DEC is capable of automatically capturing complex structures and nonlinear 

relationships among variables, eliminating the need to assess different weighting scenarios as required 

by other algorithms. All computations and algorithm implementations were performed in the Python 

environment. The results of these five clustering methods, along with comprehensive comparative 

analyses, are presented in the subsequent subsection of this study. 

5-3) Evaluation of Clustering Performance 

For the comprehensive evaluation of the clustering results, obtained from the spectral Clustering, 

HDBSCAN, DEC, GMM, and Louvain algorithms, three metrics including Davies-Bouldin, Calinski-

Harabasz, and mean silhouette were used, each examining a different aspect of clustering. The Davies-

Bouldin index (smaller value preferred) evaluates cluster density and distinctness by determining the 

ratio of intra-cluster distance to inter-cluster distance. The mean silhouette score (optimal value closer 

to 1) analyzes the quality of sample assignments at a micro level by examining the distance of each 

sample to its own cluster and the nearest other cluster. The Calinski-Harabasz index (higher value 

preferred) assesses the overall quality of clustering by examining the ratio of dispersion between clusters 

to dispersion within clusters. The combination of these three metrics enables a comprehensive 

evaluation of clustering in terms of compactness, separation, and structural cohesion. 

• Analysis of Spectral Clustering Results 

The spectral clustering algorithm maps data into a new space using the spectral features of the 

similarity matrix between data points and, then, employs the K-means algorithm to cluster the data in 

this new space. This method is particularly effective for data with complex structures and non-linear 



Application of Deep Learning Algorithms in Clustering Production Units: Enhancing Regulatory Processes Using Soft 

Computing Approaches (Case Study: North Khorasan Province)                                                                                14  

 

 

clusters. In this study, five clusters were identified across six distinct data scenarios utilizing the spectral 

clustering algorithm. Table 3 displays the results of the evaluation metrics. 

Table 3) Results of Evaluation Metrics for Spectral Clustering under Different Scenarios 

                                            Scenario 

Evaluation Metric 
1 2 3 4 5 6 

Davies-Bouldin Index 1.74 1.31 1.26 0.99 0.72 0.54 

Mean Silhouette Score 0.1439 0.2467 0.3034 0.2395 0.4402 0.5586 

Calinski-Harabasz Index 42 62 79 135 297 338 

 

According to Table 3, the Spectral Clustering algorithm performed poorly  in Scenario 1 (utilizing 

all weighted variables), as shown by a high Davies-Bouldin Index (1.74), and a low mean Silhouette 

Score (0.1439), indicating weak intra-cluster cohesion and inadequate separation.  The stepwise 

elimination of less significant variables (Scenarios 2 to 6) resulted in a noticeable enhancement in the 

evaluation metrics.  In Scenario 4, the decline of the Davies-Bouldin Index to 0.99, and the increase of 

the Calinski-Harabasz Index to 135 indicate an improved variable combination. Although Scenarios 5 

and 6 (featuring the least variables) produce superior index values (for instance, a Calinski-Harabasz 

Index of 338 in Scenario 6), Scenario 4 is suggested as the ideal option for achieving a balance between 

variable count and clustering quality. By keeping the three key variables, "number of products 

manufactured," "city of production unit’s location," and "Average total negative score of the production 

unit for the period 2015-2023," Scenario 4 achieves the optimal balance between within-cluster cohesion 

and between-cluster separation, a conclusion further supported by the significant improvement in 

metrics from Scenario 3 to 4. 

• Analysis of HDBSCAN Clustering Results 

The HDBSCAN algorithm is a density-based clustering method that extracts stable clusters by 

analyzing their hierarchical structures. This algorithm is capable of identifying clusters with varying 

densities and performs well in effectively separating noise points from the data. In this research, the 

HDBSCAN algorithm effectively detected four clusters based on density within the data. Table 4 shows 

the outcomes of the clustering assessment conducted with this algorithm. 

Table 4) Results of Evaluation Metrics for HDBSCAN Clustering Under Different Scenarios 

                                                 Scenario 

Evaluation Metric 
1 2 3 4 5 6 

Davies-Bouldin Index 1.74 1.63 1.53 1.75 1.73 4.79 

Mean Silhouette Score 0.1439 0.1641 0.1820 0.1242 0.1247 -0.13 

Calinski-Harabasz Index 42 53 61 72 101 79.4 

The analysis of HDBSCAN clustering results in Table 4 indicates that Scenario 3 (after removing 

two low-priority variables) provided the best performance, demonstrated by enhanced cluster cohesion 

and separation, as shown by a reduced Davies-Bouldin Index. Additional variable reduction in Scenarios 

4 and 5 compromised clustering quality, probably because of the elimination of important density-

influencing variables; however, Scenario 6, utilizing only one variable, failed entirely (mean Silhouette: 

-0.13). This validates the necessity of a balanced set of density-related variables for HDBSCAN. 

Consequently, Scenario 3 is suggested as the ideal configuration, achieving the most favorable 

equilibrium between variable quantity and cluster validity, yielding a Davies-Bouldin Index of 1.53, 

with improvements in the mean Silhouette score to 0.1820, and the Calinski-Harabasz Index to 61. These 

results highlight HDBSCAN’s pronounced sensitivity to variable choice and its unique performance 

relative to distance-based algorithms. 

• Analysis of GMM Clustering Results 

The analysis of the GMM clustering outcomes in Table 5 indicates that this statistically-based 

algorithm achieved a significant improvement in clustering quality by incrementally excluding low-
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importance variables. Scenario 4 was recognized as the best point, with the Davies-Bouldin Index 

dropping to 0.86, the mean Silhouette Score rising to 0.4503, and the Calinski-Harabasz Index reaching 

181. These enhancements suggest the creation of more cohesive clusters more distinct boundaries. While 

Scenario 6, which utilizes a single variable, demonstrates the highest values (Davies-Bouldin Index: 

0.51, mean Silhouette: 0.5364, Calinski-Harabasz: 639), Scenario 4 is recommended as the final option 

for its superior balance between the quantity of variables and the quality of clustering. The enhancement 

in metrics, especially the 466% growth in the Calinski-Harabasz Index from Scenario 1 to 4, validates 

the effectiveness of the GMM method in uncovering the inherent structure of the data. 

Table 5) Results of Evaluation Metrics for GMM Clustering Under Different Scenarios 
                                                 Scenario 

Evaluation Metric 
1 2 3 4 5 6 

Davies-Bouldin Index 1.57 1.21 1.36 0.86 1.09 0.51 

Mean Silhouette Score 0.2329 0.3726 0.3951 0.4503 0.4173 0.5364 

Calinski-Harabasz Index 32 77 88 181 220 639 

• Analysis of Louvain Clustering Results 

The analysis of the Louvain clustering results in Table 6 indicates that this modularity optimization-

based algorithm achieved continuous improvement in clustering quality through the gradual removal of 

low-importance variables. Scenario 5 was identified as the optimal point, where the Davies-Bouldin 

Index decreased to 0.81, the mean Silhouette Score increased to 0.3986, and the Calinski-Harabasz Index 

reached 288. These improvements signify the formation of more cohesive clusters with stronger internal 

connections. Although Scenario 6, with a single variable, shows the best values (Davies-Bouldin Index: 

0.51, mean Silhouette: 0.5868, Calinski-Harabasz: 330), Scenario 5 is proposed as the optimal choice, 

as it establishes a better balance between the number of variables and clustering quality, while also 

demonstrating a 476% increase in the Calinski-Harabasz Index from Scenario 1. These findings validate 

the effectiveness of the Louvain algorithm in detecting network patterns and inherent communities 

within the data. 

Table 6) Results of Evaluation Metrics for Louvain Clustering under Different Scenarios 

                                                Scenario 

Evaluation Metric 
1 2 3 4 5 6 

Davies-Bouldin Index 1.43 1.39 1.20 1.11 0.81 0.51 

Mean Silhouette Score 0.2241 0.2499 0.3024 0.2911 0.3986 0.5868 

Calinski-Harabasz Index 50 61 76 108 288 330 

• Analysis of DEC Clustering Results 

This research utilized the DEC algorithm alongside a particular neural network design. The network 

design consisted of a shallow autoencoder with an input layer of six neurons (matching the data 

features), a hidden encoding layer with three neurons and ReLU activation function to generate a three-

dimensional embedded space, and a reconstruction layer with six neurons and a sigmoid function for 

reconstructing the normalized data. The model was trained using the MSE loss function and the Adam 

optimizer (learning rate set to 0.001) for 100 epochs (batch size of 32). Following the initial training, 

the obtained latent vectors served as input for the K-Means algorithm to execute the final clustering. By 

combining deep learning and clustering, this method was able to automatically extract optimal variables 

and, without the need for manual variable removal, to generate five high-quality clusters. Table 7 

displays the findings of the DEC clustering evaluation metrics. 

Table 7) Results of Evaluation Metrics for DEC Clustering in Scenario 1 

               valuation Metric  
Scenario 

Davies-Bouldin Index Mean Silhouette Score Calinski-Harabasz Index 

1 0.49 0.5415 683 

The analysis of the DEC outcomes in Table 7 indicates that this sophisticated algorithm, which 

merges deep learning with clustering, has achieved remarkable performance. Through the use of an 
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autoencoder neural network, the DEC algorithm effectively mapped the data into a refined space where 

clusters are clearly distinguished. The findings from this approach demonstrate strong clustering quality, 

as the Davies-Bouldin Index achieves a favorable value of 0.49, indicating remarkable separability 

among clusters. A mean Silhouette Score of 0.415 indicates strong internal cohesion and a compact 

cluster structure, while the Calinski-Harabasz Index of 683 additionally verifies that the clusters are 

statistically distinct. These findings indicate that DEC, as an innovative approach for clustering complex 

data, has a strong ability to discover latent structures within the data. 

• Comprehensive Analysis of Clustering Algorithms’ Performance Compared with 

Previous Study 

This section systematically compares the performance of five advanced clustering algorithms, 

Spectral Clustering, HDBSCAN, DEC, GMM, and the Louvain algorithm, against the best reported 

scenario from a prior study (Pakzad et al., 2024), which utilized the traditional K-means algorithm. The 

main goal of this comparison is to assess the level of enhancement obtained by utilizing contemporary 

clustering techniques compared to the K-means algorithm, which was identified as the optimal choice 

in the earlier study. Table 8 displays the best performance of the clustering algorithms according to three 

assessment metrics: Davies-Bouldin Index, average Silhouette Score, and Calinski-Harabasz Index. 

Table 8) Performance Comparison of Clustering Algorithms Based on Evaluation Metrics 

                   Evaluation Metric 

  

Clustering Algorithm 

Optimal 

Scenario 

Davies-Bouldin 

Index 

Mean Silhouette 

Score 

Calinski-Harabasz 

Index 

Spectral 4 0.99 0.2395 135 

HDBSCAN 3 1.53 0.1820 61 

DEC 1 0.49 0.5415 683 

GMM 4 0.86 0.4503 181 

Louvain 5 0.81 0.3986 288 

K-means 4 0.73 0.4891 204 

Table 8 provides a systematic comparison of six clustering algorithms, highlighting the DEC 

method as the most efficient, with superior performance across all metrics: a Davies-Bouldin Index of 

0.49, a mean Silhouette Score of 0.54, and a Calinski-Harabasz Index of 683. While the GMM and 

Louvain algorithms demonstrate a commendable balance between the number of variables and cluster 

validity in their respective intermediate scenarios (4 and 5), the apparent metric improvements observed 

in the final, most reduced-variable scenarios are deemed artificial, resulting from an oversimplification 

of the clustering problem rather than a genuine enhancement in model capability. 

The evaluation results indicate that the DEC method has achieved a significant improvement in 

clustering quality compared to K-means. In the Davies-Bouldin Index, DEC demonstrated better cluster 

separation with a reduction of 0.24 units (from 0.73 to 0.49). The mean Silhouette Score also improved 

by 0.052 units (from 0.4891 to 0.5415), indicating increased intra-cluster cohesion. The most notable 

improvement is observed in the Calinski-Harabasz Index, which increased by 479 units (from 204 to 

683), highlighting the substantial superiority of DEC in identifying complex data structures. These 

figures clearly demonstrate that DEC outperforms the traditional K-means method in all aspects of 

clustering, including internal cohesion, separation between clusters, and overall quality. 

Figure 1 provides a comprehensive visualization of the performance across all tested scenarios for 

the clustering algorithms. It clearly shows that the DEC method, executed in a single configuration, 

outperforms all others, achieving the best scores across every evaluation metric. The chart also reveals 

a consistent trend across methods such as K-means, Spectral Clustering, GMM, and Louvain; clustering 

quality initially improves with the removal of low-importance variables (from Scenario 1 onwards), 

peaks at an optimal intermediate scenario (e.g., Scenario 4 for K-means, GMM, and Spectral; Scenario 

5 for Louvain), and then declines, with further metric gains in the most reduced scenarios being 

misleading due to the over-simplification of the problem. In stark contrast, DEC achieved its optimal 

performance without any manual variable reduction, demonstrating its inherent ability to capture and 
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preserve complex data structures. These results highlight the essential need for choosing the appropriate 

algorithm to ensure the precise analysis of multi-dimensional data. 

5-4 Cluster Labeling and Interpretation 

Based on comprehensive evaluations and in accordance with clustering standards, the DEC method was 

selected as the optimal algorithm for analyzing production units. Building on the results of this method, 

the identified clusters were labeled according to the average cluster centers presented in Table 9. The 

labeling was performed using the DEC approach and determined by key variables such as “city of the 

production unit’s location,” “number of manufactured products," and “average total negative score of 

the production unit for the period 2015–2023.” 

Table 9) Cluster Centers Extracted Using the DEC Method 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

City of the Production Unit’s Location 8.24 109.14 63.46 94.57 34.57 

Number of Manufactured Products 1.6 3.41 2.87 16.86 2.54 

Average Total Negative Score of the 

Production Unit for the period 2015-2023 
3.72 6.80 6.40 6.96 4.13 

Figure 1) Comparison of Different Clustering Methods Based on (a) Davies–Bouldin Index, (b) 

Average Silhouette Score, and (c) Calinski–Harabasz Index 

 

 

a 

 

b 
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• Cluster 1: Production units located near Bojnurd, with a relatively good average negative 

score and a low number of products. This cluster is considered low-risk due to its favorable 

geographical location and relatively satisfactory performance. 

• Cluster 2: Production units located far from Bojnurd, with a poor average negative score 

and a medium number of products. The combination of geographical distance and poor 

performance makes this cluster high-risk. 

• Cluster 3: Production units located relatively far from Bojnurd, with an average negative 

score and a low number of products. Moderate supervision is required due to their 

intermediate distance and performance. 

• Cluster 4: Production units located relatively far from Bojnurd, with a poor average 

negative score and a high number of products. High production volume coupled with poor 

performance makes this cluster critical. 

• Cluster 5: Production units located relatively close to Bojnurd, with an average negative 

score and a low number of products. Despite their favorable location, their average 

performance necessitates monitoring. 

Based on the comprehensive analyses conducted, and considering the key variables of distance from 

the center, production volume, and average negative score, the studied production units were classified 

into five distinct clusters. The clustering reveals that 20.3% of the units fall into high-risk clusters 

(Clusters 2 and 4), requiring strict supervision, while 24.9% of the units (Cluster 1) are categorized as 

low-risk due to their favorable location and appropriate performance. Clusters 3 and 5, 

comprising 54.8% of the units, require moderate supervision. This classification, validated by experts 

from the North Khorasan Provincial Administration of the National Standards Organization, provides a 

scientific foundation for establishing a tiered monitoring system. Such a system ensures quality control 

through intelligent resource allocation while reducing unnecessary supervisory burden. The 

implementation of this system fully complies with the guidelines of the Iranian National Standards 

Organization and is designed with the capability for periodic revision. 

6. Conclusion and Suggestions 

In this study, data mining and deep learning techniques were applied to cluster production units in North 

Khorasan Province. The clustering was conducted using six key variables including: “Industry Type,” 

“Industry Classification,” “Number of Quality Control Managers,” “Highest Education Level of Quality 

Control Manager,” “Number of Manufactured Products,” “City of the Production Unit’s Location,” and 

“Average Total Negative Score of the Production Unit for the period 2015-2023.” This process 
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successfully identified five distinct clusters of units with shared geographical and qualitative 

characteristics, each assigned a specific supervisory level, ranging from low to strict monitoring. 

Performance evaluation showed that the DEC method outperformed the previously used K-means 

algorithm, achieving a reduction of 0.24 in the Davies–Bouldin Index, an increase of 0.052 in the 

average Silhouette score, and a remarkable improvement of 479 in the Calinski–Harabasz Index. These 

results highlight DEC’s ability to uncover hidden structures with greater accuracy, producing clusters 

with stronger internal cohesion and clearer separability. Consequently, this approach facilitates a risk-

based, targeted supervisory strategy that can enhance the efficiency and effectiveness of regulatory 

processes, particularly for high-risk units with poor quality records. 

For future research, it is recommended to develop hybrid fuzzy–deep clustering approaches in a 

staged manner, beginning with basic algorithms, such as Fuzzy C-Means, and advancing to more 

sophisticated models, such as Fuzzy DEC. This would preserve operational efficiency while enabling 

more precise analysis of borderline and ambiguous data. Additionally, enriching the dataset with 

complementary indicators, such as laboratory test results, quality parameters of raw materials, and 

inspection reports, would enhance the robustness of the analyses. Finally, examining the generalizability 

of these findings to other provinces could contribute to the development of a unified national monitoring 

framework, thereby improving the effectiveness of supervisory processes across the country. 
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