ارائه مدلی برای زمانبندی ماشین های موازی با در نظر گرفتن کارهای قابل تقسیم، زمان آماده سازی با کاهش هزینه انرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، واحد فیروزکوه ،دانشگاه آزاد اسلامی، فیروزکوه، ایران

2 دانشیار گروه مهندسی صنایع، دانشگاه علوم و فنون مازندران، بابل، ایران

3 استادیار، گروه مهندسی صنایع، واحد فیروزکوه ،دانشگاه آزاد اسلامی، فیروزکوه، ایران

چکیده

زمانبندی ماشین های موازی یک مسئله مهم در سیستمهای تولید می باشد که یکی از اهداف مهم در ان حداقل ساختن زمان اتمام کار است اما اهداف در خصوص این مسئله محدود به زمانبندی نبوده و می تواند هزینه و از جمله هزینه انرژی را شامل شود. در این تحقیق، یک مدل برای زمانبندی ماشینهای موازی با در نظر گرفتن کارهای قابل تقسیم، راه اندازی وابسته به توالی و زمان اماده سازی به منظور حداقل ساختن زمان اتمام کار و هزینه انرژی ارائه شد. ابتدا مدل دو هدفه طراحی شد و سپس با دو الگوریتم NSGAII و MOGWO حل گردید. نتایج نشان داد که الگوریتم MOGWO دارای عملکرد بهتری نسبت به الگوریتم NSGAII بوده و هم از لحاظ مقادیر توابع هدف و هم از لحاظ معیارهای چند هدفه به نتایج بهتری دست یافته است. زمان اماده سازی می تواند بر زمان اتمام کار تا بیش از 75 درصد اثرگذار باشد اما الگوریتم NSGAII نتیجه بهتری را ارائه می کند و زمان اتمام کار با توجه به این الگوریتم به شکل قابل توجهی بهبود می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a model for scheduling parallel machines considering divisible tasks, and preparation time by reduction of energy cost

نویسندگان [English]

  • Samira Sameye 1
  • Javad Rezaeian 2
  • Mohammad Reza Lotfi 3
1 PhD Student, Department of Industrial Management, Firouzkooh Branch, Islamic Azad University, Firouzkooh, Iran
2 Associate Professor, Department of Industrial Engineering, Mazandaran University of Science and Technology , Babol, Iran
3 Assistant Professor, Department of Industrial Engineering, Firouzkooh Branch, Islamic Azad University, Firouzkooh, Iran
چکیده [English]

Scheduling parallel machines is an important problem in manufacturing systems, one of the important goals of which is to minimize the completion time, but the goals in this problem are not limited to scheduling and can include costs, including energy costs. In this research, a model for scheduling parallel machines by considering divisible jobs, sequence-dependent startup, and setup time to minimize the completion time and energy costs is presented. First, a two-objective model was designed and then solved with two algorithms, NSGAII and MOGWO. The results showed that the MOGWO algorithm had better performance than the NSGAII algorithm and achieved better results both in terms of objective function values and multi-objective criteria. Setup time can influence on make span to more than 75 percent. But NSGAII algorithm gives better results and make span can be improved based on this algorithm.

کلیدواژه‌ها [English]

  • Scheduling problem
  • parallel machines
  • energy cost
  • metaheuristic algorithm
 
Abikarram, J. B., McConky, K., & Proano, R. (2019). Energy cost minimization for unrelated parallel machine scheduling under real time and demand charge pricing. Journal of cleaner production, 208, 232-242. https://doi.org/10.1016/j.jclepro.2018.10.048
Al-Harkan, I. M., & Qamhan, A. A. (2019). Optimize unrelated parallel machines scheduling problems with multiple limited additional resources, sequence-dependent setup times and release date constraints. IEEE Access, 7, 171533-171547. https://doi.org/10.1109/ACCESS.2019.2955975
Al-Harkan, I. M., Qamhan, A. A., Badwelan, A., Alsamhan, A., & Hidri, L. (2021). Modified Harmony Search Algorithm for Resource-Constrained Parallel Machine Scheduling Problem with Release Dates and Sequence-Dependent Setup Times. Processes, 9(4), 654. https://doi.org/10.3390/pr9040654
Bernal, C. P., Salido, M. A., & Moya, C. M. (2025). Optimizing energy efficiency in unrelated parallel machine scheduling problem through reinforcement learning. Information Sciences, 693, 121674. https://doi.org/10.1016/j.ins.2024.121674
Cataldo, A., Perizzato, A., & Scattolini, R. (2015). Production scheduling of parallel machines with model predictive control. Control Engineering Practice, 42, 28-40. https://doi.org/10.1016/j.conengprac.2015.05.007
Catanzaro, D., Pesenti, R., & Ronco, R. (2023). Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey. European Journal of Operational Research, 308(3), 1091-1109. https://doi.org/10.1016/j.ejor.2023.01.029
Ding, J. Y., Song, S., Zhang, R., Chiong, R., & Wu, C. (2015). Parallel machine scheduling under time-of-use electricity prices: New models and optimization approaches. IEEE Transactions on Automation Science and Engineering, 13(2), 1138-1154. https://doi.org/10.56578/jimd030303
Gao, J., Sun, G. X., & Qian, T. H. (2024). Optimization of production scheduling through a multi-objective constrained greedy model. J. Intell Manag. Decis, 3(3), 159-174. https://doi.org/10.1109/TASE.2015.2495328
Javadi, M., Fatemi, S., Azizi, A., & Najafi, E. (2024). Designing an intelligent dynamic model of preventive maintenance and repairs in the textile and clothing industry in interaction with production using fuzzy-artificial neural network. Engineering Management and Soft Computing, 9(2), 63-90. https://doi.org/10.22091/jemsc.2024.9078.1169
Kianpour, P., Gupta, D., Krishnan, K., & Gopalakrishnan, B. (2021). Optimising unrelated parallel machine scheduling in job shops with maximum allowable tardiness limit. International Journal of Industrial and Systems Engineering, 37(3), 359-381. https://doi.org/10.1504/IJISE.2021.113443
Lai, X., Zhang, K., Li, Z., Mao, N., Chen, Q., & Zhang, S. (2023). Scheduling air conditioner testing tasks under time-of-use electricity tariff: A predict in and for optimization approach. Computers & Industrial Engineering, 175, 108850. https://doi.org/10.1016/j.cie.2022.108850
Li, X., & Liu, C. (2024). Energy-efficient scheduling in an identical parallel machine environment with peak power consumption and deadline constraints. Computers & Operations Research, 170, 106777.
Meng, L., Zhang, C., Shao, X., Ren, Y., & Ren, C. (2019). Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. International Journal of Production Research, 57(4), 1119-1145. https://doi.org/10.1080/00207543.2018.1501166
Mohamadifar, L., Moosavirad, S. H., & Mirhosseini, M. (2024). Application of linear programming model for optimizing the components of combined photovoltaic and battery system. Engineering Management and Soft Computing, 10(1), 143-154. https://doi.org/10.22091/jemsc.2024.11166.1194
Moon, J. Y., Shin, K., & Park, J. (2013). Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. The International Journal of Advanced Manufacturing Technology, 68(1), 523-535. https://doi.org/10.1007/s00170-013-4749-8
Nagari, T. B., Suletra, I. W., & Hisjam, M. (2024, November). Multiple objective traveling salesman problem using NSGA-II: A case study of ice tube distribution. In AIP Conference Proceedings (Vol. 3215, No. 1). AIP Publishing. https://doi.org/10.1063/5.0235626
Pan, Z., Lei, D., & Zhang, Q. (2018). A new imperialist competitive algorithm for multiobjective low carbon parallel machines scheduling. Mathematical problems in engineering, 2018(1), 5914360. https://doi.org/10.1155/2018/5914360
Rasti Barzoki, M., & Raeisi, S. (2022). Comparison of the Effect of Various Types of Genetic Algorithm Operators on the Total Amount of Tardiness in Flow Shop Problem. Engineering Management and Soft Computing, 7(2), 49-65. https://doi.org/10.22091/jemsc.2017.877
Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. https://doi.org/10.1016/j.cie.2018.12.020
Shao, W., Shao, Z., & Pi, D. (2020). Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based Systems, 194, 105527. https://doi.org/10.1016/j.knosys.2020.105527
Zhang, Y., Cheng, Z., Zhang, N., & Chiong, R. (2025). A weighted distribution-free model for parallel machine scheduling with uncertain job processing times. European Journal of Operational Research, 324(3), 814-824. https://doi.org/10.1016/j.ejor.2024.12.027
Zhang, Z. (2024). Multi-objective optimization method for building energy-efficient design based on multi-agent-assisted NSGA-II. Energy Informatics, 7(1), 1-17. https://doi.org/10.1186/s42162-024-00394-4
Zhou, S., Li, X., Du, N., Pang, Y., & Chen, H. (2018). A multi-objective differential evolution algorithm for parallel batch processing machine scheduling considering electricity consumption cost. Computers & Operations Research, 96, 55-68. https://doi.org/10.1016/j.cor.2018.04.009
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Akbari, A. H., Jafari, M., & Akhavan, P. (2025). Deep Reinforcement Learning Algorithm: Dynamic Job Shop Scheduling Problem with Order Rejection and Inventory. Journal of Advanced Manufacturing Systems. https://doi.org/10.1142/S0219686727500156
CAPTCHA Image