مدلسازی زنجیره تامین سیستم محصول-خدمت CLARS برای صنایع لوازم الکترونیک خانگی و صنعتی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مدیریت صنعتی و فناوری، دانشکده مدیریت و حسابداری، دانشکدگان فارابی دانشگاه تهران، قم، ایران

2 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری دانشکدگان فارابی دانشگاه تهران، قم، ایران

3 دانشجوی دکتری مدیریت صنعتی، دانشکده مدیریت و حسابداری دانشکدگان فارابی دانشگاه تهران، قم، ایران،

چکیده

هدف: شرکت‌های فعال در سیستم‌های محصول-خدمت با چالش‌های پیچیده‌ای مواجه هستند که بقای آن‌ها را تحت تأثیر قرار می‌دهد. برای مقابله با این چالش‌ها، زنجیره‌های تامین نیازمند پارادایم‌های مدیریتی جدید در تامین استراتژیک هستند. این تحقیق با هدف ارائه مدل روابط علی زنجیره تامین سیستم محصول-خدمت (CLARS) برای صنایع الکترونیک ایران انجام شده است.
روش‌شناسی پژوهش: در مرحله اول، ابعاد و مولفه‌های CLARS از طریق روش فراترکیب شناسایی شدند. سپس، این یافته‌ها در مصاحبه‌های عمیق با گروه‌های کانونی ارزیابی و با استفاده از روش دلفی-فازی نهایی شدند. در نهایت، مدل روابط علی با بهره‌گیری از نگاشت شناختی فازی طراحی گردید.
یافته‎ها: مدل علی زنجیره تامین سیستم محصول-خدمت (CLARS) و بیان اقدامات لازم برای شرکت های دارای سیستم محصول- خدمت
اصالت/ارزش افزوده علمی: نتایج تحقیق به صنایع و لوازم الکترونیک و سایر صنایع دارای سیستم محصول- خدمت برای دوام و کسب مزایای رقابتی بیشتر کمک خواهد کرد. این تحقیق اولین تحقیق در زمینه مدلسازی زنجیره تامین سیستم محصول- خدمت با ادغام استراتژی های دایره ای، ناب، چابک، تاب آور و پایدار (CLARS) است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Supply Chain Modeling of CLARS Product-Service System for Home and Industrial Electronics Industries and Appliances in Iran

نویسندگان [English]

  • Mohammad Reza Fathi 1
  • Mahsa Pishdar 2
  • Samane Sabalani 3
1 Associate Professor, Factuly of Accounting and Management. College of Farabi, University of Tehran, Iran
2 Assistant Professor, Factuly of Accounting and Management. College of Farabi, University of Tehran, Iran
3 PhD, Student , Factuly of Accounting and Management, Tehran University, Qom,, Iran,
چکیده [English]

Purpose: Companies operating in product-service systems face complex challenges that affect their survival. To address these challenges, supply chains require new management paradigms in strategic sourcing. This study aims to present a causal relationship model of the product-service system supply chain (CLARS) for the Iranian electronics industry.
Methodology: In the first stage, the dimensions and components of CLARS were identified through the meta-synthesis method. Then, these findings were evaluated in in-depth interviews with focus groups and finalized using the Delphi-fuzzy method. Finally, the causal relationship model was designed using fuzzy cognitive mapping.
Findings: Causal model of the product-service system supply chain (CLARS) and the expression of necessary measures for companies with product-service systems
Originality/Value: The research results will help electronics and appliances industries and other industries with product-service systems to survive and gain more competitive advantages. This research is the first research in the field of modeling the supply chain of the product-service system by integrating circular, lean, agile, resilient, and sustainable (CLARS) strategies.

کلیدواژه‌ها [English]

  • Circular product-service system supply chain
  • lean product-service system supply chain
  • agile product-service system supply chain
  • resilient product-service system supply chain
  • sustainable product-service system supply chain
Agarwal, N., & Seth, N. (2024). Analysis of Supply Chain Resilience Enablers and Business Outcomes Using Delphi and Fuzzy ISM for Indian Automobile Industry. Global Journal of Flexible Systems Management, 25(4), 763-783.‏ http://dx.doi.org/10.1007/s40171-024-00410-2
Alam, F., Khokhar, M., Khan, K. Bibi, M., & Khaliq, N. (2025). An Innovative Collaborative Coordination Approach for Zero Waste in the Circular Economy. J Knowl Econ. https://doi.org/10.1007/s13132-025-02684-y
Avilés-Sacoto, S. V., Avilés-Sacoto, E. C., Valencia-Vallejo, J. L., & Flores-Figueroa, D. S. (2024). An Overview of Lean Manufacturing and Sustainability. Lean Manufacturing in Latin America: Concepts, Methodologies and Applications, 653-673.‏ http://dx.doi.org/10.1007/978-3-031-70984-5
Azar, A., Jalali, R., & Khosravani, F. (2016). Soft operations research: Problem structuring approaches (2nd ed., Ch. 7, pp. 193–203). Industrial Management Organization Publications. ISBN: 6002750479
Barbrook-Johnson, P., & Penn, A. S. (2022). Systems Mapping: How to build and use causal models of systems (p. 186). Springer Nature. https://doi.org/10.1007/978-3-031-01919-7
Barrar, H., & Ruiz-Benitez, R. (2023). Exploratory study of the impact of the supply chain on integrated product-service systems design. Business Process Management Journal, 29(1), 262-284. http://dx.doi.org/10.1108/BPMJ-08-2022-0374
Bertoni, M. (2024). Multi Criteria Decision Making for PSS Design. In Data-Driven Decision Making for Product Service Systems (pp. 87-113). Cham: Springer International Publishing.‏ http://dx.doi.org/10.1007/978-3-031-60082-1_4
BozdoGan,.Ay¸ segül., Görkemli Aykut, Latife & Demirel, Neslihan (2022). An agent-based modeling framework for the design of a dynamic closed-loop supply chain network. http://dx.doi.org/10.1007/s40747-022-00780-z
Burke, H., Zhang, A., & Wang, J. X. (2023). Integrating product design and supply chain management for a circular economy. Production Planning & Control, 34(11), 1097-1113.‏ https://doi.org/10.1080/09537287.2021.1983063
Clavijo-Buritica, N., Triana-Sanchez, L., & Escobar, J. W. (2023). A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain. Socio-Economic Planning Sciences, 85,101431 https://doi.org/10.1016/j.seps.2022.101431
Cvetić, B., Danilović, M., Ilić, O., & Rakićević, Z. (2024). Evaluation of the performance measures in manufacturing cell formation. Scientia Iranica.‏ http://dx.doi.org/10.24200/SCI.2024.62733.8004
Deacon, C. (2024). Products that serve: Towards a performance-based model in the construction sector.‏ https://msd.unimelb.edu.au/study/research/oculus/2023/products-that-serve-towards-a-performance-based-model-in-the-construction-sector
Dewi, D. R. S., & Hermanto, Y. B. (2024). Achieving supply chain agility through product-service systems offering. Journal of Industrial Engineering and Management, 17(2), 611-629.‏ http://dx.doi.org/10.3926/jiem.7521
Dewi, Dian Retno Sari,. Hermanto, Yustinus Budi,.Tait, Elizabeth,. Sianto, Martinus Edy.(2023). The Product–Service System Supply Chain Capabilities and Their Impact on Sustainability Performance: A Dynamic Capabilities Approach. Sustainability 2023, 15, 1148. https://doi.org/10.3390/su15021148
Ding, B., & Hernández, X. F. (2023). Case study as a methodological foundation for Technology Roadmapping (TRM): Literature review and future research agenda. Journal of Engineering and Technology Management, 67, 101731.‏ http://dx.doi.org/10.1016/j.jengtecman.2023.101731
Droege, H., Kirchherr, J., Raggi, A., & Ramos, T. B. (2023). Towards a circular disruption: On the pivotal role of circular economy policy entrepreneurs. Business Strategy and the Environment, 32(3), 1142-1158.‏ http://dx.doi.org/10.1002/bse.3098
Farooque M, Zhang A, Thurer M, Qu T, Huisingh D.(2019). Circular supply chain management: A definition and structured literature review, Journal of Cleaner Production (2019), doi: https://doi.org/10.1016/j.jclepro.2019.04.303
Govindan, K., Demartini, M., Formentini, M., Taticchi, P., & Tonelli, F. (2024). Unravelling and mapping the theoretical foundations of sustainable supply chains: A literature review and research agenda. Transportation Research Part E: Logistics and Transportation Review, 189, 103685.‏ http://dx.doi.org/10.1016/j.tre.2024.103685
Habibi, A., & Jalalnia, R. (2022). Phenomenology. Narvan Publications.
Hefft, D., Pohlmann, M. O., & Große, N. (2024). Uncovering Interrelationships In MRO-Related Industrial Service Delivery Employing Interpretive Structural Modeling. ESSN: 2701-6277, 144-155.‏  http://dx.doi.org/10.15488/17708
Iqbal, M., Waqas, M., Ahmad, N., Hussain, K., & Hussain, J. (2024). Green supply chain management as a pathway to sustainable operations in the post-COVID-19 era: investigating challenges in the Chinese scenario. Business Process Management Journal, 30(4), 1065-1087.‏  https://doi.org/10.1108/BPMJ-05-2023-0381
Ivanov, D. (2024). Transformation of supply chain resilience research through the COVID-19 pandemic. International Journal of Production Research, 62(23), 8217-8238. ‏ https://doi.org/10.1080/00207543.2024.2334420
Khawka, Z. M. H., Abd Rahman, A., Sidek, S. B., Ahmed, S. A. B., Al-Hadeethi, R. H. F., & Al-Dabbagh, T. (2024). Effect of lean supply chain on competitive advantage: a systematic literature review. Cogent Business & Management, 11(1), 2370445.‏ https://doi.org/10.1080/23311975.2024.2370445
Kopanaki, Evangelia (2022). Conceptualizing Supply Chain Resilience: The Role of Complex IT Infrastructures https://doi.org/10.3390/ systems10020035
Kühl, C., Bourlakis, M., Aktas, E., & Skipworth, H. (2022). Product-service systems and circular supply chain practices in UK SMEs: The moderating effect of internal environmental orientation. Journal of Business Research, 146, 155-165.‏ https://doi.org/10.1016/j.jbusres.2022.03.078
Li, Ai Qiang; Found, Pauline (2016). Lean and Green Supply Chain for the Product-Services System (PSS) The Literature Review and A Conceptual Framework. 2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  doi: 10.1016/j.procir.2016.03.057
Mishra, N.K., Pande Sharma, P. and Chaudhary, S.K. (2025), "Redefining agile supply chain practices in the disruptive era: a case study identifying vital dimensions and factors", Journal of Global Operations and Strategic Sourcing, Vol. 18 No. 1, pp. 64-90. https://doi.org/10.1108/JGOSS-04-2023-0031
Nag, U., Sharma, S. K., & Govindan, K. (2021). Investigating drivers of circular supply chain with product-service system in automotive firms of an emerging economy. Journal of Cleaner Production, 319, 128629.‏  https://doi.org/10.1016/j.jclepro.2021.128629
Nozari, H., Tavakkoli-Moghaddam, R., Rohaninejad, M., & Hanzalek, Z. (2023, September). Artificial intelligence of things (AIoT) strategies for a smart sustainable-resilient supply chain. In IFIP International Conference on Advances in Production Management Systems (pp. 805-816). Cham: Springer Nature Switzerland.‏ http://dx.doi.org/10.1007/978-3-031-43670-3_56
Saunders, M. N., and Darabi, F. (2024). Using multi-and mixed methods research designs. In Field Guide to Researching Employment and Industrial Relations (pp. 71-87). Edward Elgar Publishing. https://doi.org/10.4337/9781035313891.00018‏
Suresh, R.V. Mahalakshmi, K. Mangaiarkarasi, S. Mahalingam, S. (2023). Impact of Supply Chain Management Components On the Organizational Performance of Manufacturing Enterprises. DOI: 10.5281/zenodo.777491
Susitha, E., Jayarathna, A., & Herath, H. M. R. P. (2024). Supply chain competitiveness through agility and digital technology: A bibliometric analysis. Supply Chain Analytics, 7, 100073.‏  http://dx.doi.org/10.1016/j.sca.2024.100073
Tarigan, Z. J. H., Siagian, H., Palumian, Y., & Sutapa, I. N. (2023). The influence of the human-machine interface on operational performance through supply chain agility (Doctoral dissertation, Petra Christian University).‏ http://dx.doi.org/10.5267/j.uscm.2023.6.013
Teigiserova, D. A., & Schraven, D. F. (2024). A comprehensive framework for circular product-service systems in infrastructure: Enhancing customer-contractor collaboration. Journal of Cleaner Production, 479, 144010.‏  http://dx.doi.org/10.1016/j.jclepro.2024.144010
Vogiantzi, C., & Tserpes, K. (2023). On the definition, assessment, and enhancement of circular economy across various industrial sectors: A literature review and recent findings. Sustainability, 15(23), 16532.‏  http://dx.doi.org/10.3390/su152316532
Wang, M., & Zhang, K. (2022). Improving agricultural green supply chain management by a novel integrated fuzzy-delphi and grey-WINGS model. Agriculture, 12(10), 1512.‏  http://dx.doi.org/10.3390/agriculture12101512
Wang, Y., Iqbal, U., & Gong, Y. (2021). The performance of resilient supply chain sustainability in COVID-19 by sourcing technological integration. Sustainability, 13(11), 6151.‏  https://doi.org/10.3390/su13116151
Wen, Z. (2022). Building Resilience through Supply Chain Agility: Cross-sectional and Longitudinal Studies (Doctoral dissertation, The University of Toledo).‏ https://etd.ohiolink.edu
Zare Ahmadabadi, H., Saffari Darberazi, A., Zamzam, F., Babakhanifard, M. S., Kiani, M., & Mofatehzadeh, E. (2024). A model of the factors affecting supply chain resilience: an integrative approach incorporating hesitant fuzzy TOPSIS and meta-synthesis. Journal of applied research on industrial engineering, 11(2), 195-211.‏  https://doi.org/10.22105/jarie.2024.433396.1592
Zhao, N., Hong, J., & Lau, K. H. (2023). Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model. International Journal of Production Economics, 259, 108817.  ‏ https://doi.org/10.1016/j.ijpe.2023.108817  
Zhou, Z., & Hosseini, S. (2023). Evaluating supply chain resilience: a resilience capacity perspective. International Journal of Logistics Systems and Management, 46(3), 333-355.‏  https://doi.org/10.1504/IJLSM.2023.134798
Zomer, T. T. S., Cauchick-Miguel, P. A., Kohlbeck, E., Moro, S. R., de Senzi Zancul, E., & de Sousa Mendes, G. H. (2024). In vestigating social and environmental hotspots throughout the lifecycle of product-service systems in the early design stages. Journal of Cleaner Production, 462, 142724. https://doi.org/10.1016/j.jclepro.2024.142724
ezaeenour, J., Hashempoor, M., & Akbari, A. H. (2020). A four-echelon supply chain considering economic, social and regions satisfaction goals. Journal of Industrial Engineering Research in Production Systems, 7(15), 199-217. 
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Sazvar, Z., Tanhaeean, M., Aria, S. S., Akbari, A., Ghaderi, S. F., & Iranmanesh, S. H. (2020). A computational intelligence approach to detect future trends of COVID-19 in France by analyzing chinese data. Health Education and Health Promotion, 8(3), 107-113. 
Hosseini, S., Rezaeenour, J., Masoumi, M., & Akbari, A. H. (2021). A The Evaluation of Knowledge Management in Supply Chain Using EFQM Framework, Fuzzy Multi-Attribute Decision Making and Multi-Objective Programming. Industrial Management Studies, 19(60), 193-235.
CAPTCHA Image