تحلیل ریسک و رتبه‌بندی تهدیدات لایه‌ی محاسبات لبه‌ی شبکه‌ی تلفن همراه نسل پنجم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی قم، دانشکده مهندسی برق و الکترونیک، قم، ایران

2 استادیار، پژوهشکده فناوری ارتباطات، پژوهشگاه ارتباطات و فناوری اطلاعات، تهران ، ایران

چکیده

5G خدمات جدید و پیشرفته‌ای مانند واقعیت مجازی/افزوده (AR/VR)، پخش ویدئو با کیفیت بالا، جراحی از راه دور، اینترنت اشیاء (IoT) و خودروهای هوشمند را ارائه می‌دهد. ETSI، محاسبات لبه با دسترسی چندگانه (MEC) را برای پردازش کارآمد و سریع داده‌ها در شبکه‌های تلفن همراه معرفی کرده است. MEC یک فناوری کلیدی است که این خدمات جدید را با استقرار چندین تجهیز با قابلیت‌های محاسباتی و ذخیره‌سازی در لبه شبکه، نزدیک به کاربران نهایی، فعال می‌کند. در میان سایر الزامات فناورانه، امنیت عامل مهمی در تحقق استقرار MEC می‌باشد. در این مقاله، با مرور بر معماری 5G و سپس تمرکز بر معماری MEC، تهدیدات، آسیب‌پذیری‌ها و راه‎کارهای امنیتی ارائه شده توسط پژوهشگران و مراجع علمی در این حوزه بررسی می‌شوند. در نهایت، با ارزیابی تأثیر/شدت و احتمال موفقیت تهدیدات بر روی شبکه 5G، به تحلیل ریسک می‌پردازیم تا به کمک آن، رتبه‎بندی خوبی از تهدیدات ارائه کرده باشیم. نتایج مطالعات و تحلیل‌های ما در این مقاله، به بهره‌برداران شبکه 5G این اطلاع را می‌دهد که می‌بایست کدامیک از تهدیدات را در اولویت بررسی قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Risk Analysis and Threat Ranking for the Mobile Edge Computing Layer of the Fifth Generation Mobile Network

نویسندگان [English]

  • Mohammad Ragheb 1
  • Mohammad Reza Keshavarz, 2
1 Qom University of Technology,, Faculty of Electrical and Computer Engineering, Qom, Iran
2 ICT Research Institute, Iran Telecommunication Research Center (ITRC), Tehran, Iran
چکیده [English]

The fifth generation of mobile networks (5G) offers new and advanced services such as virtual/augmented reality (AR/VR), high-definition video streaming, remote surgery, Internet of Things (IoT) and smart cars with strict requirements. The European Telecommunications Standards Institute (ETSI) has introduced Multiple Access Edge Computing (MEC) for efficient and fast data processing in mobile networks. MEC is a key technology that enables these new services by deploying multiple appliances with computing and storage capabilities at the edge of the network, close to end users. Among other technological requirements, security is an important factor in realizing MEC deployment. In this article, while reviewing the 5G architecture and then focusing on the MEC architecture, threats, vulnerabilities and security solutions provided by researchers and scientific authorities in this field are examined. Finally, by evaluating the impact and probability of success of threats in 5G, we analyze the risk in order to provide a good ranking of threats. The results of our studies and research in this article will help secure the 5G network and deploy security solutions.

کلیدواژه‌ها [English]

  • Fifth Generation Mobile Network (5G)
  • Multiple Access Edge Computing (MEC)
  • MEC Security Vulnerabilities and Threats
  • Conventional and Specific MEC Security Solutions
  • Threat ranking
A. Reznik, Y. Fang, and S. Ullah, “MEC in an enterprise setting: A solution outline,” ETSI, Sophia Antipolis, France, White Paper, 2018. Accessed: May 16, 2019. [Online]. Available: 
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp30_MEC_Enterprise_ FINAL.pdf . 
ISBN No. 979-10-92620-25-2
A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti, “AlphaLogger: Detecting motion-based side-channel attack using smartphone keystrokes,” J. Ambient Intell. Humanized Comput., vol. 14, pp. 4869–4882 ,2023. https://doi.org/10.1007/s12652-020-01770-0
C. Lorenz et al., “An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement,” IEEE Commun. Mag., vol. 55, no. 3, pp. 217–223, Mar. 2017. DOI: 10.1109/MCOM.2017.1600414CM
Cloud Edge Computing: Beyond the Data Center, OpenStack, Austin, TX, USA, 2018.
“ENISA threat landscape” report, Oct. 2023.
ETSI. (2015). Network Functions Virtualisation (NFV) Security: Report on Use Cases and Technical Approaches for Multi-Layer Host Administration. Accessed: May 16, 2019. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFVSEC/ 001_099/009/01.01.01_60/gs_nfv-sec009v010101p.pdf
ETSI. (2016). Mobile Edge Computing (MEC) Framework and Reference Architecture. Accessed: May 16, 2019. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine migration: Challenges, techniques, and open issues,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1206–1243, 2nd Quart., 2018. DOI: 10.1109/COMST.2018.2794881
G. Li and P. Bours, “Studying WiFi and accelerometer data based authentication method on mobile phones,” in Proc. ACM 2nd Int. Conf. Biometr. Eng. Appl., 2018, pp. 18–23. DOI:10.1145/3230820.3230824
G. Nencioni, R. G. Garroppo and R. F. Olimid, "5G Multi-Access Edge Computing: A Survey on Security, Dependability, and Performance," IEEE Access, vol. 11, pp. 63496-63533, 2023. DOI: 10.1109/ACCESS.2023.3288334
I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2429–2453, 3rd Quart., 2018. DOI:10.1109/COMST.2018.2815638
I. Farris et al., “Towards provisioning of SDN/NFV-based security enablers for integrated protection of IoT systems,” in Proc. IEEE Conf. Stand. Commun. Netw. (CSCN), 2017, pp. 169–174. DOI: 10.1109/CSCN.2017.8088617
J. Ni, X. Lin, and X. S. Shen, “Efficient and Secure Service-Oriented Authentication Supporting Network Slicing for 5G-Enabled IoT,” IEEE J. Sel. Areas in Commun., vol. 36, no. 3, pp. 644–657, 2018. DOI: 10.1109/JSAC.2018.2815418
M. H. Mahalat, S. Saha, A. Mondal, and B. Sen, “A PUF based light weight protocol for secure WiFi authentication of IoT devices,” in Proc. IEEE 8th Int. Symp. Embedded Comput. Syst. Design (ISED), 2018, pp. 183–187. DOI: 10.1109/ISED.2018.8703993
M. Pattaranantakul, Y. Tseng, R. He, Z. Zhang, and A. Meddahi, “A first step towards security extension for NFV orchestrator,” in Proc. ACM Int. Workshop Security Softw. Defined Netw. Netw. Function Virtualization, 2017, pp. 25–30. DOI:10.1145/3040992.3040995
Multi-Access Edge Computing (MEC); Terminology, Standard GS MEC 001, Version 3.1.1, ETSI, Jan. 2022. 
Multi-Access Edge Computing (MEC); Framework and Reference Architecture, Standard GS MEC 003, Version 3.1.1, Mar. 2022.
Multi-Access Edge Computing (MEC); Study on Inter-MEC Systems and MEC-Cloud Systems Coordination, Standard GR MEC 035, Version 3.1.1, ETSI, Jun. 2021.
N. Islam, S. Das, and Y. Chen, “On-device mobile phone security exploits machine learning,” IEEE Pervasive Comput., vol. 16, no. 2, pp. 92–96, Apr.–Jun. 2017. DOI: 10.1109/MPRV.2017.26
O. N. Hamoud, T. Kenaza, and Y. Challal, “Security in device-to-device communications: A survey,” IET Netw., vol. 7, no. 1, pp. 14–22, 2017. https://doi.org/10.1049/iet-net.2017.0119
Oulu, “Multi-Access Edge Computing (MEC) Artificial Intelligence (AI),” Feb 2018, last accessed May 16, 2019. [Online]. Available: http://www.edgeai.info/project/mec-ai/
P. Gope, R. Amin, S. H. Islam, N. Kumar, and V. K. Bhalla, “Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment,” Future Gener. Comput. Syst., vol. 83, pp. 629–637, Jun. 2018. https://doi.org/10.1016/j.future.2017.06.023
P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017. DOI: 10.1109/COMST.2017.2682318
P. Ranaweera, A. D. Jurcut, M. Liyanage, and M. Liyanage, “Survey on Multi-Access Edge Computing Security and Privacy,” IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 1078 – 1124, 2021. DOI: 10.1109/COMST.2021.3062546
P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey on multi-access edge computing for Internet of Things realization,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991, 4th Quart., 2018. DOI: 10.1109/COMST.2018.2849509
P. Porambage, T. Kumar, M. Liyanage, J. Partala, L. Lov´en, M. Ylianttila, and T. Sepp¨anen. (2019) Sec-EdgeAI: AI for Edge Security Vs Security for Edge AI. Last accessed May 16, 2019. [Online]. Available: https://www.researchgate.net/publication/330838792 Sec-EdgeAI AI for Edge Security Vs Security for Edge AI.
R. Harel and S. Babbage, “5G Security Recommendations Package 2: Network Slicing,” 2016, last accessed 16 May 2019. [Online]. Available: https://www.ngmn.org/fileadmin/user upload/160429 NGMN 5G Security Network Slicing v1 0.pdf
R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A survey on security and privacy of 5G technologies: Potential solutions, recent advancements and future directions,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 196–248, 1st Quart., 2020. DOI: 10.1109/COMST.2019.2933899
R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges,” Future Gener. Comput. Syst., vol. 78, pp. 680–698, Jan. 2018. https://doi.org/10.1016/j.future.2016.11.009
S.    -C. Cha, M.-S. Chuang, K.-H. Yeh, Z.-J. Huang, and C. Su, “A userfriendly privacy framework for users to achieve consents with nearby BLE devices,” IEEE Access, vol. 6, pp. 20779–20787, 2018. DOI: 10.1109/ACCESS.2018.2820716
S. Kekki et al. (2018). MEC in 5G Networks. Accessed: May 16, 2019. [Online]. Available: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
S. Lal, T. Taleb, and A. Dutta, “NFV: Security threats and best practices,” IEEE Commun. Mag., vol. 55, no. 8, pp. 211–217, Aug. 2017. DOI: 10.1109/MCOM.2017.1600899
S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server placement in mobile edge computing,” J. Parallel Distrib. Comput., vol. 127, pp. 160–168, May 2019. https://doi.org/10.1016/j.jpdc.2018.06.008
T. Kumar, P. Porambage, I. Ahmad, M. Liyanage, E. Harjula, and M. Ylianttila, “Securing gadget-free digital services,” Computer, vol. 51, no. 11, pp. 66–77, 2018. DOI: 10.1109/MC.2018.2876017
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun.Surveys Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017. DOI: 10.1109/COMST.2017.2705720
W. Huang et al., “A New System Risk Definition and System Risk Analysis Approach Based on Improved Risk Field,” IEEE Trans. on Reliability, vol. 69, no. 4, pp. 1437-1452, Dec. 2020. DOI: 10.1109/TR.2019.2942373
X. Lin, J. Li, J. Wu, H. Liang, and W. Yang, “Making Knowledge Tradable in Edge-AI Enabled IoT: A Consortium Blockchain-based Efficient and Incentive Approach,” IEEE Trans. on Industrial Informatics, 2019. DOI: 10.1109/TII.2019.2917307
X. Wang et al., “Deep learning-based classification and anomaly detection of side-channel signals,” in Proc. Cyber Sensing, vol. 10630. Orlando, FL, USA, 2018, Art. no. 1063006. [Online]. Available: https://doi.org/10.1117/12.2311329
X. Zhang, A. Kunz, and S. Schröder, “Overview of 5G security in 3GPP,” in Proc. IEEE Conf. Stand. Commun. Netw. (CSCN), 2017, pp. 181–186. DOI: 10.1109/CSCN.2017.8088619
Y. Jeon, H.-I. Ju, and S. Yoon, “Design of an LPWAN communication module based on secure element for smart parking application,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), 2018, pp. 1–2. DOI: 10.1109/ICCE.2018.8326112
Y. Zhang, F. Ren, A. Wu, T. Zhang, J. Cao, and D. Zheng, “Certificateless multi-party authenticated encryption for NB-IoT terminals in 5G networks,” IEEE Access, vol. 7, pp. 114721–114730, 2019. DOI: 10.1109/ACCESS.2019.2936123
Z. Ezzati Khatab. A. Mohammadi, V. Pourahmadi, A. Kuhestani, “A machine learning-based physical layer authentication with phase impairments,” Physical Commun., vol. 68, Feb. 2025. Doi: https://doi.org/10.1016/j.phycom.2024.102545
Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When Mobile Blockchain Meets Edge Computing,” IEEE Commun. Mag., vol. 56, no. 8, pp. 33–39, 2018. DOI: 10.1109/MCOM.2018.1701095
Z. Yan, P. Zhang, and A. V. Vasilakos, “A security and trust framework for virtualized networks and software-defined networking,” Security Commun. Netw., vol. 9, no. 16, pp. 3059–3069, 2016. DOI:10.1002/sec.1243
Z. Zhao, G. Min, Y. Pang, W. Gao, and J. Lv, “Towards fast and reliable WiFi authentication by utilizing visible light diversity,” in Proc. 16th Annu. IEEE Int. Conf. Sens. Commun. Netw. (SECON), 2019, pp. 1–9. DOI: 10.1109/SAHCN.2019.8824935
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Rezaeenour, J., Hashempoor, M., & Akbari, A. H. (2020). A four-echelon supply chain considering economic, social and regions satisfaction goals. Journal of Industrial Engineering Research in Production Systems, 7(15), 199-217. 
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
CAPTCHA Image