مدل هوشمند پیش‌بینی بلوغ سرمایه فکری در شرکت‌های دانش‌بنیان با استفاده از یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 دانشیار، گروه مدیریت، دانشگاه صنعتی مالک اشتر، تهران، ایران.

3 دانشیار، گروه مهندسی صنایع، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران.

4 دانشیار، گروه مهندسی صنایع، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.

10.22091/jemsc.2025.12548.1266

چکیده

هدف این پژوهش، طراحی مدلی هوشمند برای پیش‌بینی بلوغ سرمایه فکری در شرکت‌های دانش‌بنیان مستقر در شهرک‌های صنعتی با استفاده از الگوریتم‌های یادگیری ماشین است. این تحقیق به لحاظ هدف، کاربردی-توسعه‌ای و از لحاظ روش، توصیفی-مدل‌سازی و در زمینه جمع‌آوری داده‌ها به‌صورت آمیخته می‌باشد. داده‌ها از طریق بررسی ادبیات موضوع، مصاحبه با خبرگان و دو پرسشنامه جمع‌آوری شده است. برای تحلیل داده‌ها، روش‌های مختلفی از جمله روش دلفی، تحلیل عاملی تأییدی و الگوریتم یادگیری ماشین مانند جنگل تصادفی، K نزدیک‌ترین همسایه، درخت تصمیم، بیز ساده و شبکه عصبی پرسپترون چندلایه با استفاده از نرم افزارهای Spss ، PLS و کتابخانه های مختلف Python به کار رفته است. نتایج نشان داد که تمامی مدل‌ها توانایی پیش‌بینی سطح بلوغ سرمایه فکری را دارند، اما مدل شبکه عصبی پرسپترون چندلایه MLP عملکرد بهتری نسبت به سایر مدل‌ها بر اساس معیارهای مختلف از جمله دقت، صحت، حساسیت و امتیاز F1 از خود نشان داد و بهترین نتایج را با مقادیر 88/37٪، 89/75 ٪، 88/37٪، 86/51 ٪ و 0/918 در مساحت زیر منحنی ROC ارائه کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent Model for Predicting Intellectual Capital Maturity in Knowledge-Based Companies Using Machine Learning

نویسندگان [English]

  • Hossein Azizinejad 1
  • Gholamreza Tavakoli 2
  • Mohammad Ehsanifar 3
  • Amir Najafi 4
1 PhD Student, Department of Industrial Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Department of Management, Malek Ashtar University of Technology, Tehran, Iran.
3 Associate Professor, Department of Industrial Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
4 Associate Professor, Department of Industrial Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The aim of this research is to design an intelligent model for predicting the maturity of intellectual capital in knowledge-based companies located in industrial parks using machine learning algorithms. This study is applied-developmental in purpose and descriptive-modeling in methodology, utilizing a mixed approach for data collection. The data were gathered through a review of the literature, interviews with experts, and two questionnaires. For data analysis, various methods were employed, including the Delphi method, confirmatory factor analysis, and machine learning algorithms such as random forests, K-nearest neighbors, decision trees, naive Bayes, and multi-layer perceptron neural networks, using SPSS, PLS software, and various Python libraries. The results indicated that all models were capable of predicting the level of intellectual capital maturity; however, the multi-layer perceptron (MLP) model outperformed the others based on several criteria, including accuracy, precision, sensitivity, and F1 score, yielding the best results with values of 88.37%, 89.75%, 88.37%, 86.51%, and 0.918 in the area under the ROC curve.

کلیدواژه‌ها [English]

  • Intellectual capital
  • Intellectual capital maturity
  • Knowledge-based companies
  • Machine learning
Abdali, M., Kordy, E., & Velian, H. (2022). Assessing the maturity of intellectual capital based on the themes of dual learning linkage in knowledge-based companies in the oil and gas sector. Human Resource Management Research Journal, 14(48), 227–270. DOR: 20.1001.1.82548002.1401.14.2.4.7. [In persian]
Andersen, S., & Hanstad, D. (2017). Knowledge development and transfer in a mindful project-organization. International Journal of Managing Projects in Business, 6(2), 236-250. dx.doi.org/10.1108/17538371311319007.
Asiaei, K., Jusoh, R., & Bontis, N. (2018). Intellectual capital and performance measurement systems in Iran. Journal of Intellectual Capital, 19(2), 294-320. https://doi.org/10.1108/JIC-11-2016-0125.
Asif, J., Ting, I. W. K., & Kweh, Q. L. (2021). Intellectual Capital Investment and Firm Performance of the Malaysian Energy Sector-A New Perspective from a Nonlinearity Test. Energy Research Letters, 1(1), 1-4. https://doi.org/10.46557/001c.13622.
Bani Asadi, M., Roshan, A., Yaghoubi, N., & Ronaghi, M. H. (2022). Designing a comprehensive intellectual capital model using a meta-synthesis approach. Human Resource Management Research Journal, 13(4), 221–254. https://dor.isc.ac/dor/20.1001.1.82548002.1400.13.4.7.7.
Baryannis, G., Dani, S. & Antoniou, G. (2019). "Predicting supply chain risks using machine learning: The trade-off between performance and interpretability", Future Generation Computer Systems, Vol. 101, pp. 993– 1004. https://doi.org/10.1016/j.future.2019.07.059.
Bassiouni, M.M., Chakrabortty, R.K., Sallam, K.M. & Hussain, O.K. (2024), "Deep learning approaches to identify order status in a complex supply chain", Expert Systems with Applications, Vol. 250, p. 123947.
Bratianu, C., & Pînzaru, F. (2015). Challenges for the university intellectual capital in the knowledge economy. Management Dynamics in the Knowledge Economy, 3(4), 609–627. https://EconPapers.repec.org/RePEc:nup:jrmdke:v:3:y:2015:i:4:p:609-627.
Bratianu, C. (2018), “Intellectual capital research and practice: 7 myths and one golden rule”, Management & Marketing. Challenges for the Knowledge Society, Vol. 13, No. 2, pp. 859-879. DOI: 10.2478/mmcks-2018-0010.
Bürgel, T. R., Hiebl, M. R., & Pielsticker, D. I. (2023). Digitalization and entrepreneurial firms' resilience to pandemic crises: Evidence from COVID-19 and the German Mittelstand. Technological Forecasting and Social Change, 186, 122135. https://doi.org/10.1016/j.techfore.2022.122135.
Chowdhury, L.A.M., Rana, T., Akter, M. and Hoque, M. (2018), "Impact of intellectual capital on financial performance: evidence from the Bangladeshi textile sector", Journal of Accounting & Organizational Change, Vol. 14 No. 4, pp. 429-454. https://doi.org/10.1108/JAOC-11-2017-0109.
Chehreh, S., & Sarabadani, A. (2024). A model based on random forest algorithm and Jaya optimization to predict          bank customer churn. Engineering Management and Soft Computing, 9(2), 132-148. doi: 10.22091/jemsc.2024.9541.1174 .[In persian]
Hanifi Niyri, K., Pourjabali, R., & Babaei, M. (2023). Drawing a knowledge-based economy model to achieve knowledge-based development. Studies of Knowledge Research, 2(4), 1–22.
           doi: 10.22034/jkrs.2024.59246.1042. [In persian]
Gerami, A., Kamsari, H., Rabiei, F., & Salmani, M. (2022). Investigating the nonlinear relationship between intellectual capital and firm performance. Management and Accounting Outlook, 5(68), 47–58. https://www.jamv.ir/article_160329.html. [In persian]
Ghasemi, F., Danesh Fard, K., Najafbeigi, R., & Afshar Kazemi, M. A. (2020). Designing an indigenous model for measuring intellectual capital with a pathological approach in the Ministry of Petroleum. Scientific-Research Quarterly of Human Resource Management in the Oil Industry, 11(44), 211–238. http://iieshrm.ir/article-1-895-fa.html. [In persian]
Gong, Y., Liu, G., Xue, Y., Li, R. & Meng, L. (2023), A survey on dataset quality in machine learning, Information and Software Technology, Vol. 162, p. 107268,  https://doi.org/10.1016/j.infsof.2023.107268.
Gunawan, T., Jacob, J. & Duysters, G. (2015). Entrepreneurial orientation and network ties: innovative performance of SMEs in an emerging-economy manufacturing cluster. Working Paper, No. 2013/28.
Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W. & Monostori, L. (2018), Lead time prediction in a flow-shop environment with analytical and machine learning approaches, IFAC-PapersOnLine, Vol. 51 No. 11, pp. 1029–1034. https://doi.org/10.1016/j.ifacol.2018.08.472
Hadidane, S., & Zakia, L. (2022). Intellectual Capital: Concepts, Characteristics and Classifications. afak-revues, 7(2), 1-10. https://asjp.cerist.dz/en/article/181678.
Kordy, E. (2023). Designing an intellectual capital maturity model (ICMM) for stock market companies to develop sustainable corporate functions. Doctoral dissertation, Faculty of Humanities, Islamic Azad University, Shahrood Branch. DOR: 20.1001.1.82548002.1401.14.2.4.7. [In persian]
Laghi, E., Di Marcantonio, M., Cillo, V. & Paoloni, N. (2022), The relational side of intellectual capital: an empirical study on brand value evaluation and financial performance, Journal of Intellectual Capital, Vol. 23 No. 3, pp. 479-515. https://doi.org/10.1108/JIC-05-2020-0167.
Liu, W. H., & Kweh, Q. L. (2022). Reexamining nonlinear effects of intellectual capital on firm efficiency. Annals of Operations Research, 315(2), 1319-1344.‏ DOI: 10.1007/s10479-021-04252-4.
Mirzaei, S. A., & Douaei, M. (2019). Presenting a new model with an artificial intelligence approach to predict stock prices. Sixth National Conference on Applied Research in Computer Engineering and Information Technology, Tehran. https://civilica.com/doc/101173. [In persian]
Molaee fard, R. (2023). Developing a recommender system for the health tourism industry using data mining methods. Engineering Management and Soft Computing, 8(2), 125-142.   https://jemsc.qom.ac.ir/article_1848.html. [In persian]
Mubarik, M. S., Bontis, N., Mubarik, M., & Mahmood, T. (2022). Intellectual capital and supply chain resilience. Journal of intellectual capital, 23(3), 713-738. DOI:10.1108/JIC-06-2020-0206.
Nejat, S. A., & Karimi Khuzani, A. (2020). Measuring the maturity level of intellectual capital management research and studies of the Police Force. Scientific Journal of Resource Management in the Police Force, 8(2), 155–180. https://www.noormags.ir/view/fa/articlepage/1692026. [In persian]
Nejat, S. A., Bigler, M., & Kashiyan, S. B. (2022). Evaluating the maturity of intellectual capital in the field of management and planning at Tehran University of Medical Sciences. Payaward Salamat Journal, 16(1), 71–80. http://dorl.net/dor/20.1001.1.17358132.1401.16.1.6.3. [In persian]
Raenayi Kordshouli, H., Farhangian, B., & Amini, M. (2016). The status of intellectual capital in Iran and regional countries in line with the 2025 vision of the Islamic Republic of Iran. Iranian Management Sciences Quarterly, 11(41), 1–28. https://journal.iams.ir/article_224.html. [In persian]
Rajabpour, I., & Babashahi, J. (2020). Identifying career path anchors of knowledge workers based on the competency model (Case study: Oil Industry Research Institute). Human Resource Management Research, 12(4), 9–36. https://dor.isc.ac/dor/20.1001.1.82548002.1399.12.4.2.5. [In persian]
Ramírez, Y., & Gordillo, S. (2013). Recognition of intellectual capital importance in the university sector. International Journal of Business and Social Research, 3(4), 27–41. https://EconPapers.repec.org/RePEc:lrc:larijb:v:3:y:2013:i:4:p:27-41
Rezaeian, A., Danaeifard, H., & Zangoueinejad, A. (2011). Designing a conceptual model for measuring knowledge assets - intellectual capital at the national level. Government Management Outlook, 2(6), 25–41. https://manuscript.isc.ac/Inventory/8/601748.htm. [In persian]
Rodrigues V. C,. Mauricio S. P., & Viviane V. C .(2018). A proposal of intellectual capital maturity model (ICMM) evaluation. Journal of Intellectual Capital; 20(2): 208-34. DOI:10.1108/JIC-12-2016-0130.
Rossi, F. M., Nicolò, G., & Polcini, P. T. (2018). New trends in intellectual capital reporting. Journal of Intellectual Capital, 19(4), 814–835. https://doi.org/10.1108/JIC-09-2017-0119.
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
Salmani, D., Piran Nejad, A., Farhangi, A. A., & Mandagari, M. A. (2019). Development and explanation of intellectual capital maturity model in Iranian universities. Management in Islamic University, 8(2), 247–260. https://miu.nahad.ir/article_723.html. [In persian]
Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K. R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247-278.
                 DOI: 10.1109/JPROC.2021.3060483.
Santoso, E. (2012). Intellectual capital in Indonesia: The influence on financial performance of banking industry. University of Phoenix.
Sardo, F., Serrasqueiro, Z., & Alves, H. (2018). On the relationship between intellectual capital and financial performance: A panel data analysis on SME hotels. International Journal of Hospitality Management, 75, 67–74. https://doi.org/10.1016/j.ijhm.2018.03.001.
Schumacher, A., Erol, S. & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp, 52, 161-166. https://doi.org/10.1016/j.procir.2016.07.040.
Secundo, G., Elena-Perez, S., Martinaitis, Ž., & Leitner, K. H. (2015). An intellectual capital maturity model (ICMM) to improve strategic management in European universities: A dynamic approach. Journal of intellectual Capital, Vol. 16, no 2, pp 419 – 442. https://doi.org/10.1108/JIC-06-2014-0072.
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Shamsi, M., Karimian, M., & Karimian, M. (2023). Breast Cancer Detection Using Ensemble Classifiers for Accuracy Improvement. Engineering Management and Soft Computing, 8(2), 92-109. https://jemsc.qom.ac.ir/article_1596.html .[In persian]
Todericiu, R., & Stanit, A. (2016). Universities intellectual capital. Management and Economics, 4(84), 348–356.
            https://www.armyacademy.ro/reviste/rev4_2016/TODERICIU.pdf.
Van Luu, T., & Chromjaková, F. (2024). Knowledge-based circular economics model for sustainable competitiveness: framework development and analysis. Environment, Development and Sustainability, 1-20. DOI:10.1007/s10668-023-04415-2.
Vaz, C. R., Paulo M. S., & Claudia V. V. (2018). A proposal of intellectual capital maturity model (ICMM) evaluation, Journal of Intellectual Capital, Vol. 20, No. 2, pp 208-234. https://doi.org/10.1108/JIC-12-2016-0130.
Wagire, A. A., Joshi, R., Rathore, A. P. S. & Jain, R. (2021). Development of maturity model for assessing the implementation of Industry 4.0: learning from theory and practice. Production Planning & Control, 32(8), 603-622. https://doi.org/https://doi.org/10.1080/09537287.2020.1744763.
Wang, P. (2021). A study on the intellectual capital management over cloud computing using analytic hierarchy process and partial least squares. Kybernetes, ahead-of-print(ahead-of-print). 9-23. doi.org/10.1080/09585192.2018.1511611.
Yuan, B., Xia, H., & Guo, C. (2021). An evaluation index system for intellectual capital evaluation based on machine learning. Alexandria Engineering Journal, 60(1), 1519-1524. https://doi.org/10.1016/j.aej.2020.11.006.
CAPTCHA Image