Alirezaei, M., Niaki, S. T. A., & Niaki, S. A. A. (2019). A bi-objective hybrid optimization algorithm to reduce noise and data dimension in diabetes diagnosis using support vector machines. Expert Systems with Applications, 127, 47-57.
https://doi.org/10.1016/j.trb.2017.04.003
Barik, S., Mohanty, S., Mohanty, S., & Singh, D. (2021). Analysis of prediction accuracy of diabetes using classifier and hybrid machine learning techniques. In Intelligent and Cloud Computing (pp. 399-409). Springer, Singapore.
https://doi.org/1094/j.trb.2002.24.45
Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2020). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology, 1-16.
https://doi.org/1033/j.trb.2022.20.12
Kaur, P., & Sharma, M. (2018). Analysis of data mining and soft computing techniques in prospecting diabetes disorder in human beings: a review. Int. J. Pharm. Sci. Res, 9, 2700-2719.
https://doi.org/1093/j.trb.2017.22.63
Kazerouni, F., Bayani, A., Asadi, F., Saeidi, L., Parvizi, N., & Mansoori, Z. (2020). Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches. BMC bioinformatics, 21(1), 1-13.
https://doi.org/1019/j.trb.2018.14.13
Kouziokas, G. N. (2020). SVM kernel based on particle swarm optimized vector and Bayesian optimized SVM in atmospheric particulate matter forecasting. Applied Soft Computing, 93, 106410.
https://doi.org/1086/j.trb.2010.32.80
Kumar, A., Kumar, P., Srivastava, A., Kumar, V. A., Vengatesan, K., & Singhal, A. (2020, April). Comparative Analysis of Data Mining Techniques to Predict Heart Disease for Diabetic Patients. In International Conference on Advances in Computing and Data Sciences (pp. 507-518). Springer, Singapore.
https://doi.org/1083/j.trb.2012.35.14
Li, Z., Li, Y., Lu, W., & Huang, J. (2020). Crowdsourcing logistics pricing optimization model based on DBSCAN clustering algorithm. IEEE Access, 8, 92615-92626.
https://doi.org/1074/j.trb.2018.9.61
Marie-Sainte, S. L., & Alalyani, N. (2020). Firefly algorithm based feature selection for Arabic text classification. Journal of King Saud University-Computer and Information Sciences, 32(3), 320-328.
https://doi.org/1017/j.trb.2015.38.125
Manikannan, K., & Nagarajan, V. (2020). Optimized mobility management for RPL/6LoWPAN based IoT network architecture using the firefly algorithm. Microprocessors and Microsystems, 77, 103193.
https://doi.org/1048/j.trb.2006.23.93
Mishra, P., Biancolillo, A., Roger, J. M., Marini, F., & Rutledge, D. N. (2020). New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends in Analytical Chemistry, 116045.
https://doi.org/1013/j.trb.2023.37.122
Pitchaimanickam, B., & Murugaboopathi, G. (2020). A hybrid firefly algorithm with particle swarm optimization for energy efficient optimal cluster head selection in wireless sensor networks. Neural Computing and Applications, 32(12), 7709-7723.
https://doi.org/1071/j.trb.2013.7.138
Prasad, K. S., Reddy, N. C. S., & Puneeth, B. N. (2020). A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms. SN Computer Science, 1(2), 1-6.
https://doi.org/1030/j.trb.2020.31.125
Shankar, K., Lakshmanaprabu, S. K., Gupta, D., Maseleno, A., & De Albuquerque, V. H. C. (2020). Optimal feature-based multi-kernel SVM approach for thyroid disease classification. The journal of supercomputing, 76(2), 1128-1143.
https://doi.org/1061/j.trb.2022.13.65
Sheridan, K., Puranik, T. G., Mangortey, E., Pinon-Fischer, O. J., Kirby, M., & Mavris, D. N. (2020). An application of dbscan clustering for flight anomaly detection during the approach phase. In AIAA Scitech 2020 Forum (p. 1851).
https://doi.org/1033/j.trb.2021.14.99
Tang, S., Yuan, S., & Zhu, Y. (2020). Data preprocessing techniques in convolutional neural network based on fault diagnosis towards rotating machinery. IEEE Access, 8, 149487-149496.
https://doi.org/1060/j.trb.2017.29.82
Trachanatzi, D., Rigakis, M., Marinaki, M., & Marinakis, Y. (2020). A Firefly Algorithm for the Environmental Prize-Collecting Vehicle Routing Problem. Swarm and Evolutionary Computation, 100712.
https://doi.org/1072/j.trb.2002.30.38
Wang, Y., Gu, Y., & Shun, J. (2020, June). Theoretically-efficient and practical parallel DBSCAN. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (pp. 2555-2571).
https://doi.org/1092/j.trb.2012.36.31
Zhou, J., Nekouie, A., Arslan, C. A., Pham, B. T., & Hasanipanah, M. (2020). Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm. Engineering with Computers, 36(2), 703-712.
https://doi.org/1080/j.trb.2010.32.57
ارسال نظر در مورد این مقاله