-طراحی مدل ریاضی زنجیره تأمین حلقه بسته چندهدفه با رویکرد انتخاب تأمین کننده و درنظرگرفتن تخفیف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. رایانامه: saedi@bankmellat.ir

2 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران. رایانامه: fathikiamars@yahoo.com

3 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. رایانامه: radfar@gmail.com

چکیده

یکی از گام‌‌های اساسی در جهت سبز شدن زنجیره‌های تأمین، بررسی الزام‌ها و عوامل زیست‌محیطی در تأمین‌کننده‌ها است. امروزه شبکه‌های زنجیره‌ تأمین به عنوان ستون اصلی فعالیت‌های اقتصادی شناخته می‌شوند. این تحقیق یک مدل برنامه­ریزی خطی عددصحیح مختلط برای مسئله زنجیره ‌تأمین‌‌ حلقه بسته چنددوره‌ای، چند‌محصولی، چند‌هدفه با چندین تأمین‌کننده و در نظر گرفتن برگشت مجدد محصولات معیوب به چرخه تولید و سیاست تخفیف توأم کلی و نموی توسعه داده شده است. مدل پیشنهادی با استفاده از دو الگوریتم فراابتکاری پیشنهادی بهینه‌سازی ازدحام ذرات چندهدفه و الگوریتم ژنتیک مرتب‌سازی نامغلوب و ترکیب آن‌ها به تولید جواب‌های پارتو می‌پردازد. جهت مقایسه عملکرد روش‌های حل، پنج شاخص تعریف گردیده و نتایج عددی حاصله نشانگر کارایی و کیفیت الگوریتم ترکیبی پیشنهادی است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Multi-Objective Closed-loop Supply Chain Mathematical Model with Supplier Selection Approach and considering Discount

نویسندگان [English]

  • Esmat Saadi 1
  • kiamars fathi 2
  • Reza Radfar 3
1 PhD student in Industrial Management, Faculty of Management and Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran. Email: e.saedi@bankmellat.ir
2 Assistant Professor, Department of Industrial Management, Faculty of Management and Accounting, South Tehran Branch, Islamic Azad University, Tehran, Iran. Email: fathikiamars@yahoo.com
3 Professor, Department of Industrial Management, Faculty of Management and Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran. Email: radfar@gmail.com
چکیده [English]

One of the key steps in greening supply chains is to investigate the environmental requirements and factors in supplier selection. Today supply chain networks are known as the main pillar of economic activities. To this end, in this article a multi-period, multi-product, multi-objective closed-loop supply chain problem has been investigated. Moreover, the return of defective products to the production cycle and the general and progressive simultaneous discount policy have been considered through an integer linear mathematical model. The presented model generates Pareto solutions using two proposed meta-heuristic algorithms, multi objective particle swarm optimization and non-dominated sorting genetic algorithm and combination of the two. To compare the performance of the solution methods, five criteria are defined and the numerical results show the efficiency and quality of the proposed hybrid algorithm.

کلیدواژه‌ها [English]

  • Green Supplier Selection
  • Green Supply Chain
  • Meta-heuristic model
Amid, A., Ghodsypour, S. H., & O’Brien, C. (2009). A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain. International Journal of Production Economics, 121(2), 323-332. DOI: https://doi.org/10.1016/j.ijpe.2007.02.040
Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000-3011. DOI: https://doi.org/10.1016/j.eswa.2011.08.162
Bhattacharya, R., Kaur, A., & Amit, R. K. (2018). Price optimization of multi-stage remanufacturing in a closed loop supply chain. Journal of cleaner production, 186, 943-962. DOI: https://doi.org/10.1016/j.jclepro.2018.02.222
Chaudhry, S. S., Forst, F. G., & Zydiak, J. L. (1993). Vendor selection with price breaks. European Journal of Operational Research, 70(1), 52-66. DOI: https://doi.org/10.1016/0377-2217(93)90232-C
Dahel, N. E. (2003). Vendor selection and order quantity allocation in volume discount environments. Supply Chain Management: An International Journal, 8(4), 335-342 DOI: https://doi.org/10.1108/13598540310490099
Ebrahim, R. M., Razmi, J., & Haleh, H. (2009). Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment. Advances in Engineering Software, 40(9), 766-776. DOI: https://doi.org/10.1016/j.advengsoft.2009.02.003
Fleischmann, M., Beullens, P., BLOEMHOF‐RUWAARD, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and operations management, 10(2), 156-173 DOI: https://doi.org/10.1111/j.1937-5956.2001.tb00076.x
Ghayebloo, S., Tarokh, M. J., Venkatadri, U., & Diallo, C. (2015). Developing a bi-objective model of the closed-loop supply chain network with green supplier selection and disassembly of products: the impact of parts reliability and product greenness on the recovery network. Journal of Manufacturing Systems, 36, 76-86 DOI: https://doi.org/10.1016/j.jmsy.2015.02.011
Govindan, K., Khodaverdi, R., & Jafarian, A. (2013). A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. Journal of Cleaner production, 47, 345-354 DOI: https://doi.org/10.1016/j.jclepro.2012.04.014
Kannan, D., de Sousa Jabbour, A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research, 233(2), 432-447. DOI: https://doi.org/10.1016/j.ejor.2013.07.023
Lee, A. H., Kang, H. Y., Lai, C. M., & Hong, W. Y. (2013). An integrated model for lot sizing with supplier selection and quantity discounts. Applied Mathematical Modelling, 37(7), 4733-4746 DOI: https://doi.org/10.1016/j.apm.2012.09.056
Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254. DOI: https://doi.org/10.1016/j.eswa.2015.02.010
Mavrotas, George. (2007)."Generation of efficient solutions in multiobjective mathematical programming problems using GAMS. Effective implementation of the ε-constraint method." Lecturer, Laboratory of Industrial and Energy Economics, School of Chemical Engineering. National Technical University of Athens
Soltani Tehrani M.,Hasanpour H.,Ramezani S. (2015). Optimization model of cost and carbon dioxide in the closed-loop supply chain. Management research in IRAN, 19(1) , 169-189 (In Persian) Dor: 20.1001.1.2322200.1394.19.1.8.6
Srivastava, S. K. (2007). Green supply‐chain management: a state‐of‐the‐art literature review. International journal of management reviews, 9(1), 53-80. DOI: https://doi.org/10.1111/j.1468-2370.2007.00202.x
Saffar M.,Shakouri Ganjavi H., Razmi J. (2015). Design of a green closed loop supply chain considering operational risk in Uncertainty conditions and Solving that with the algorithm NSGA II. Journal of Industrial Engineering, 49(1), 55-68 (In Persian) DOI: https://doi.org/10.22059/jieng.2015.54141
Wu, C., & Barnes, D. (2016). An integrated model for green partner selection and supply chain construction. Journal of Cleaner Production, 112, 2114-2132. DOI: https://doi.org/10.1016/j.jclepro.2015.02.023
Xia, W., & Wu, Z. (2007). Supplier selection with multiple criteria in volume discount environments. OMEGA – International Journal of Management Science, 35(5), 494-504 DOI: https://doi.org/10.1016/j.omega.2005.09.002
Yeh, W. C., & Chuang, M. C. (2011). Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with applications, 38(4), 4244-4253 DOI: https://doi.org/10.1016/j.eswa.2010.09.091
Zhou, Z., Dou, Y., Liao, T., & Tan, Y. (2018). A Preference Model for Supplier Selection Based on Hesitant Fuzzy Sets. Sustainability, 10(3), 659. DOI: https://doi.org/10.3390/su10030659
CAPTCHA Image