-تشخیص بیماری قلبی عروق کرونر با سیستم هوشمند ترکیبی براساس الگوریتم نهنگ، شبیه ساز تبرید و ماشین بردار پشتیبان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، دانشکده فنی وعلوم پایه، دانشگاه کوثربجنورد، بجنورد، ایران

2 دانشجو، دانشکده فنی وعلوم پایه، دانشگاه کوثربجنورد، بجنورد، ایران

چکیده

در سال­های اخیر، الگوریتم­های یادگیری ماشین به طور گسترده­ای در تشخیص و درمان به موقع بیماری­ها نقش بسزایی را ایفا می­کنند. علاوه بر این، تشیخص بیماری در مراحل آغازین آن، در بهبود بیماری و در کاهش هزینه­های درمانی بیمار بسیار موثر است. بیماری قلبی یکی از دلایل اصلی مرگ در جهان شناخته شده­ است. مطالعات زیادی برای تشخیص بیماری و طراحی سیستم هوشمند و کارا انجام شده ­است. در این مقاله، الگوریتم ترکیبی نهنگ و شبیه ساز تبرید برای شناسایی عوامل موثر در تشخیص بیماری ارائه شده ­است و الگوریتم ماشین بردار پشتیبان برای طبقه­بندی موثر بیماری لحاظ شده ­است. رویکرد پیشنهادی با مجموعه داده بیماری قلبی کلیولند در پایگاه داده UCI ارزیابی شده ­است. الگوریتم پیشنهادی با صحت 87.78 درصد با تعداد ویژگی کمتر توانسته بیماری را تشخیص دهد. نتایج حاصل برتری روش پیشنهادی را نشان می­دهد و همچنین رویکرد پیشنهادی می­تواند پزشکان را در تشخیص درست و  در مراحل اولیه بیماری یاری رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Diagnosis of Coronary Heart Disease by Using Hybrid Intelligent Systems Based on the Whale Optimization Algorithm, Simulated Annealing and Support Vector Machine

نویسندگان [English]

  • Zeinab Hassani 1
  • Mahin Khosravi 2
1 Engineering Faculty, Kosar University of Bojnord, Bojnurd, Iran
2 Engineering Faculty, Kosar University of Bojnord, Bojnurd, Iran
چکیده [English]

 In recent years, machine learning algorithms are widely used for diagnosis and timely treatment of diseases. Moreover, diagnosis of disease on early stages is very effective in improving the disease and in reducing the cost of treatment for the patient. Heart disease is one of the main causes of death in the world. Several studies have been conducted to diagnose of disease and to design an intelligent and efficient system. In this paper, a hybrid algorithm of Whale Optimization Algorithm and simulated annealing are presented to identify the effective factors in the diagnosis of the disease. The support vector machine algorithm is considered for effective classification of the disease. The proposed approach is evaluated using the Cleveland Heart Disease Data Collection in the UCI database. The proposed algorithm has obtained with an accuracy of 87.78% which is able to diagnose of disease with fewer attributes. The results exhibition the superiority of the proposed method which the proposed approach can help physicians to diagnose and to improve disease in the early stages

کلیدواژه‌ها [English]

  • Coronary Heart Disease
  • Support Vector Machine
  • Whale Optimization Algorithm
  • Simulated Annealing
 Khemphila and V. Boonjing. (2010). Comparing Performances of Logistic Regression, Decision trees,
and Neural Networks for Classifying Heart Disease Patients. 2010 IEEE International
Conference on Computer Information Systems and Industrial Management Systems, pp. 193199.

 Buchan, K., Filannino, M., Uzuner, O. (2017). Automatic prediction of coronary artery disease from
clinical narratives. Journal of biomedical informatics, Vol.72, pp.23-32.
 Burges C. (1998). A tutorial on support vector machines for pattern recognition1. Data Mining and
Knowledge Discovery, vol.2, pp. 121 – 167.
 Center for Machine Learning and Intelligent Systems. Cleveland heart disease data details, Available
from: URL http://archive.ics.uci.edu/ml/machine-learningdatabases/ heart-disease/heart disease.
Names
 Cortes C. Vapnik V. (1995). Support-vector networks. Machine Learning, 20, pp. 273–297.
 D. Goldberg, K. Deb, B. Korb. (1989). Messy genetic algorithms: motivation, analysis, and first results,
Complex Syst. 3, pp.493–530.
 Davari Dolatabadi, A., Esmael Zadeh, S., Mohammadzadeh, B. (2017). Automated diagnosis of
coronary artery disease (CAD) patients using optimised SVM. Vol.138, pp. 117-126.
 G. Sanchita, D. Anindita, et al. (2016). Evolutionary algorithm based techniques to handle big data, in:
P.B.S. Mishra, et al. (Eds.), Techniques and Environments for Big Data Analysis: Parallel,
Cloud, and Grid Computing, Springer Interna- tional publishing: Cham, pp. 113–158.
 Huang T. Kecman V. Kopriva I. (2006). Kernel based algorithms for mining huge data sets, supervised,
semi-supervised, and unsupervised learning, Springer-Verlag, Berlin, Heidelberg.
 Khosravanian A, Ayat SS. (2015). Presenting an intelligent system for diagnosis of coronary heart
disease by using Probabilistic Neural Network. Health Inf Manage; 12(1), pp.3-13.
 R. Jensen, Q. Shen. (2003). Finding Rough Set Reducts with Ant Colony Optimiza- tion, in:
Proceedings of the 2003 UK Workshop on Computational Intelligence, pp. 15–22.
 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. (1983). Optimization by simulated annealing, Science 220
(4598), pp.671–680.
 S. Mirjalili, A. Lewis. (2016). The whale optimization algorithm, Adv. Eng. Softw. Vol. 95, pp. 51–67.
 S. Pouriyeh, S. Vahid, G. Sannino, G. D. Pietro and H. Arabnia, J. Gutierrez. (2017). A Comprehensive
Investigation and Comparison of Machine Learning Techniques in the Domain of Heart
Disease,” IEEE Symposium on Computers and Communication.
 S. Xu, Z. Zhang, D. Wang, J. Hu, X. Duan and T. Zhu. (2017). Cardiovascular Risk Prediction Method
Based on CFS Subset Evaluation and Random Forest Classification Framework. International
Conference on Big Data Analysis.
 V. Vapnik and A. Chervonenkis. (1991). The necessary and sufficient conditions for consistency in the
empirical risk minimization method. Pattern Recognition and Image Analysis, vol. 1, no. 3, pp.
283-305.
 Wong, N.D. (2014). Epidemiological studies of CHD and the evolution of preventive cardiology. Nat.
Rev. Cardiol. Vol.11, pp.276-289.
 

CAPTCHA Image