-تعیین ویژگی های موثر برای بیماری نوروپاتیک در بیماران دارای درد مزمن با استفاده از شبکه عصبی عمیق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد مهندسی کامپیوتر گرایش هوش مصنوعی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران، ایران

2 عضو هیئت علمی دانشکده مهندسی برق، گروه کنترل، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

هدف از این تحقیق تعیین ویژگی های موثر بالینی در بیماران نوروپاتیک دارای درد مزمن می‌باشد. این نوع بیماری بر اثر عواملی مختلف چون جنگ، تصادفات، حوادث ورزشی صورت می پذیرد. در این پژوهش، پرسشنامه درد مرکز تحقیقات علوم اعصاب شفا واقع در بیمارستان تخصصی و فوق تخصصی خاتم الانبیاء(ص) تهران مورد بررسی قرار گرفت. با استفاده از شبکه عصبی عمیق و نزدیک ترین همسایگی و الگوریتم ژنتیک لیست ویژگی ها با دقت اندازه گیری ۷۵ درصد به دست آمد. پرسشنامه مک گیل به عنوان بهترین ویژگی های موثر در بیماری نوروپاتیک برای بیماران با درد مزمن تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the Effective Factors on Neuropathic Diseases in Patients with Chronic pain Using Deep Neural Networks

نویسندگان [English]

  • Mobin Shaterian 1
  • Mohammad Teshnehlab 2
1 Department of Computer Engineering, Islamic Azad University Tehran Science and Research Branch,Tehran, Iran
2 Electrical Eng. Department of K. N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

 The main purpose of this research is finding major characteristics of clinical signs in the diagnosis of neuropathic disease in patients with chronic long-term pain. This type of disease is caused by various factors such as war, accidents and sports events. In this research, pain questionnaire of Shafa Neuroscience Research Center in Khatam-ol-Anbia Hospital in Tehran is study. By using the deep neural network and the nearest neighbor and the genetic algorithm and the auto encoder, the list of features was obtained with a precision measurement of 75 percentage. The McGill questionnaire was designated as the best effective feature for Neuropathic Pain.

کلیدواژه‌ها [English]

  • Neuropathic
  • Chronic Long-termPain
  • McGill Questionnaire
  • Neural Network
 D. C. Turk, R. H. Dworkin. (2001). What should be the core outcomes in chronic pain clinical trials?
M. A. Ashburn , P. S. Staats. (1999). Management of chronic pain, The Lancet, 353(67), 186569

 F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl, J. Havel. (2013). Artificial neural
networks in medical diagnosis, J. Appl. Biomed. 11(3), 47-58.
 F. Mohammadzadeh et.al, (2013). Epidemiology of Chronic Pain in Tehran Small Area Estimation of
its Prevalence in Tehran Neighborhoods by Bayesian Approach (Urban HEART-2 study),” Iran.
J. Epidemiol, 9.
 F. Mohammadzadeh et.al, (2015). A Fairly Comprehensive Survey of Chronic Pain in Iranian
Population: Prevalence, Risk Factors, and Impact on Daily Life. Health Scope 4(3).
 http://www.ilna.ir/fa/tiny/news-357698
 http://www.khatamhospital.org/librarybooks.php?n_branch=&idfield=113.
 http://www.lmo.ir/index.aspx?siteid=1&pageid=2370
 M. Sleed, C. Eccleston, J. Beecham, M. Knapp, A. Jordan. (2005). The economic impact of chronic
pain in adolescence: Methodological considerations and a preliminary costs-of-illness study.
Pain. 11(.1-3), 183-190
 S. K. Verma, S. Chun, B. J. Liu. (2014). A web-based neurological pain classifier tool utilizing
Bayesian decision theory for pain classification in spinal cord injury patients
CAPTCHA Image