-قطعه‌بندی جریان داده حسگرها در محیط‌های هوشمند فراگیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی کامپیوتر، دانشگاه صنعتی کرمانشاه، کرمانشاه،

2 گروه مهندسی برق، دانشگاه صنعتی کرمانشاه، کرمانشاه،

چکیده

امروزه توسعه محیط­های هوشمند فراگیر به موضوعی جذاب برای محققین تبدیل شده است. در این محیط­ها، تعاملات کاربر با اشیاء مختلف محیطی در طول زمان، با استفاده از حسگرهایی ثبت شده، و رویدادهای حسگرها به صورت جریانی از داده­ها مورد پردازش قرار می­گیرند. در این پردازش، عمل کاربر بازشناسی شده، و بر حسب آن، خدماتی به او ارائه می­گردند. در بسیاری از رویکردهای بازشناسی اعمال، ابتدا جریان داده ورودی قطعه بندی شده، و سپس عمل مربوط به هر قطعه تشخیص داده می­شود. در این رویکردها یک گام اولیه بسیار مهم، قطعه بندی جریان داده­های حسگرها است. در این مقاله به این مساله پرداخته­ایم، و برای حل آن روش جدیدی را، بر مبنای یک مساله برنامه ریزی تفاضل محدب، پیشنهاد داده­ایم. در روش پیشنهادی، برای هر رویداد حسگر در جریان داده­ها، یک بردار ویژگی با استفاده از رویکردی بیزی محاسبه، و دنباله این بردارها در یک تابع هزینه تفاضل محدب به کار گرفته شده است. بردارهای ویژگی و تابع هزینه را با در نظر گرفتن مکاشفه­هایی که مطابق با شرایط محیط­های هوشمند فراگیر هستند، محاسبه کرده­ایم. قطعات داده­ با کمینه­سازی این تابع استخراج می­گردند. در ارزیابی­ها از یک شبیه­ساز خانه­های هوشمند برای تولید جریان داده­های حسگرها استفاده شده است. میزان خلوص قطعات، و آنتروپی شرطی قطعه­بندی برای سنجش میزان کارآیی روش پیشنهادی محاسبه گردیده­اند. ارزیابی­های نشان می­دهند که در مقایسه با تعدادی از رویکردهای موجود، روش پیشنهادی عملکرد قابل قبولی را از خود نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Segmentation of the Sensor Data Stream in Pervasive Smart Environments

نویسندگان [English]

  • Vahid Ghasemi 1
  • Mohammad Javadian 1
  • Sajad Hayati 2
1 Kermanshah University of Technology (KUT), Kermanshah, Iran.
2 Department of Mechanical Engineering, Kermanshah University of Technology (KUT), Kermanshah, Iran.
چکیده [English]

Nowadays, pervasive environment development has garnered lots of attentions. In such environments, user-object interactions along time are recorded via several sensors, and sensor events are processed as a stream of data. In this process, user’s activities are recognized, and accordingly, essential services are provided. In many activity recognition approaches, firstly the input data stream is segmented, then the activity pertaining to each segment is induced. In such approaches, sensor data stream segmentation is a predominant phase. In this paper, this problem is investigated and a novel method, based on a difference of convex programming problem, is proposed to solve it. In the proposed method a feature vector is calculated for each sensor event in the data stream using a Bayesian approach, and the sequence of such vectors is hired in a difference of convex cost function. The cost function and feature vectors has been calculated by considering heuristics adopting to smart environments. Data segments are extracted by minimizing the cost function. The segmentation purity and conditional entropy have been calculated to measure the performance. Evaluations show that the proposed method has an acceptable performance comparing to some existing approaches.

کلیدواژه‌ها [English]

  • Pervasive Environment
  • Sensor Data Stream
  • Convex Programming Problem
 Bingham, E. (2010). Finding segmentations of sequences. In Inductive Databases and Constraint-Based
Data Mining (pp. 177-197). Springer, New York, NY.
 Cho, H., An, J., Hong, I., & Lee, Y. (2015, May). Automatic Sensor Data Stream Segmentation for
Real-time Activity Prediction in Smart Spaces. In Proceedings of the 2015 Workshop on IoT
challenges in Mobile and Industrial Systems (pp. 13-18). ACM.
 Cohen, C. J., Scott, K. A., Huber, M. J., Rowe, S. C., & Morelli, F. (2008, October). Behavior
recognition architecture for surveillance applications. In 2008 37th IEEE Applied Imagery
Pattern Recognition Workshop (pp. 1-8). IEEE.
 Fahad, L. G., Khan, A., & Rajarajan, M. (2015). Activity recognition in smart homes with self
verification of assignments. Neurocomputing, 149, 1286-1298.
 Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., & Duman, H. (2004). Creating
an ambient-intelligence environment using embedded agents. IEEE Intelligent Systems, 19(6),
12-20
 Hong, X., & Nugent, C. D. (2013). Segmenting sensor data for activity monitoring in smart
environments. Personal and ubiquitous computing, 17(3), 545-559.
 Koskimaki, H., Huikari, V., Siirtola, P., Laurinen, P., & Roning, J. (2009, June). Activity recognition
using a wrist-worn inertial measurement unit: A case study for industrial assembly lines. In 2009
17th Mediterranean Conference on Control and Automation (pp. 401-405). IEEE.
 Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and
mobile computing, 10, 138-154.
 Liao, J., Bi, Y., & Nugent, C. (2010, July). Activity recognition for Smart Homes using DempsterShafer

theory of Evidence based on a revised lattice structure. In 2010 Sixth International
Conference on Intelligent Environments (pp. 46-51). IEEE.
 Liao, J., Bi, Y., & Nugent, C. (2011). Using the Dempster–Shafer theory of evidence with a revised
lattice structure for activity recognition. IEEE Transactions on Information Technology in
Biomedicine, 15(1), 74-82
 Lipp, T., & Boyd, S. (2016). Variations and extension of the convex–concave procedure. Optimization
and Engineering, 17(2), 263-287.
 Manning, C., Raghavan, P., & Schütze, H. (2010). Introduction to information retrieval. Natural
Language Engineering, 16(1), 100-103.
 Mendez-Vazquez, A., Helal, A., & Cook, D. (2009, April). Simulating events to generate synthetic data
for pervasive spaces. In Workshop on Developing Shared Home Behavior Datasets to Advance
HCI and Ubiquitous Computing Research. Citeseer.
 Okeyo, G., Chen, L., Wang, H., & Sterritt, R. (2014). Dynamic sensor data segmentation for real-time
knowledge-driven activity recognition. Pervasive and Mobile Computing, 10, 155-172.
 Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint
activities among multiple residents in smart environments. Journal of ambient intelligence and
humanized computing, 1(1), 57-63.
 van Kasteren, T. L., Englebienne, G., & Kröse, B. J. (2011). Human activity recognition from wireless
sensor network data: Benchmark and software. In Activity recognition in pervasive intelligent
environments (pp. 165-186). Atlantis Press.
 Wan, J., O'grady, M. J., & O'hare, G. M. (2015). Dynamic sensor event segmentation for real-time
activity recognition in a smart home context. Personal and Ubiquitous Computing, 19(2), 287301.

 Wang, L., Gu, T., Tao, X., Chen, H., & Lu, J. (2011). Recognizing multi-user activities using wearable
sensors in a smart home. Pervasive and Mobile Computing, 7(3), 287-298.
 Weiser, M. (1991). The Computer for the 21 st Century. Scientific american, 265(3), 94-105.
 Yala, N., Fergani, B., & Fleury, A. (2017). Towards improving feature extraction and classification for
activity recognition on streaming data. Journal of Ambient Intelligence and Humanized
Computing, 8(2), 177-189
CAPTCHA Image