-تحلیل سیستمهای مدیریت ارتباط با مشتریان با رویکرد خلق دانش (مورد مطالعه: یکی از شرکتهای ارائه دهنده خدمات اینترنتی )

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده فنی مهندسی، گروه مهندسی صنایع، دانشگاه قم

چکیده

دانش مشتری یکی از موضوعات مورد توجه هر کسب و کاری برای کسب مزیت رقابتی است. مزیت رقابتی بواسطه خلق دانش جدید صورت می‌گیرد. نکته این‌‌جاست که اطلاعات مربوط به مشتریان چگونه تبادل می‌شود و چطور به خلق دانش جدید منجر می‌شود. در این مقاله به بررسی میزان پشتیبانی از فرآیند خلق دانش مشتری توسط سیستم‌های مدیریت ارتباط با مشتریان (CRM) در سازمان مورد نظر می‌پردازیم. بدین منظور، با انجام مصاحبه‌های نیمه‌ساختاریافته با کارشناسان حوزه‌های مختلف سازمان، سیستم‌های مورد استفاده در این سازمان شناسایی و طبقه‌بندی شد. هم‌چنین فرایند خلق دانش که بواسطه هر یک از این سیستم‌ها ایجاد می‌شود شناسایی و معرفی شد. بررسی CRM سازمان مورد بررسی حاکی از این است که سیستم‌های CRM تحلیلی از فرایند ترکیب‌سازی پشتیبانی می‌کنند، سیستم‌های CRM عملیاتی، اجتماعی‌سازی و بیرونی‌سازی را پشتیبانی می‌کنند و سیستم‌های CRM مشارکتی بیشتر فرایندهای اجتماعی‌سازی را پشتیبانی می‌کنند. از سوی دیگر، سیستم‌های CRM مشارکتی و تحلیلی، با ایجاد فرصت‌های یادگیری، فرایندهای درونی‌سازی را نیز پشتیبانی می‌کنند.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of CRM systems with knowledge creation approach Case of: Internet Service Provider corp

نویسنده [English]

  • Seyyed Jamaleddin Hosseini
Assistant Prof. Faculty of Engineering, Qom University, Qom, Iran
چکیده [English]

Now a days Customer knowledge is one of the most interesting topics for every organizations in order to gain competitive advantage. Competitive advantage can be achieved through creation of new knowledge. The point is that it is important to know that how information about customers is collected and lead to create new knowledge. In this paper, we consider the levels of support for customer knowledge creation processes by customer relationship management (CRM) in the case. All CRM systems that used in the organization were identified and categorized based on semi-structured interviews with experts in various fields. Then the process of knowledge creation that is created by each system were identified. The survey showed that analytical CRM systems support combination process, operational CRM systems support socialization and externalization processes, and collaborative CRM systems support socialization process. On the other hand, collaborative and analytical CRM systems support internalization process by creating learning opportunities.

کلیدواژه‌ها [English]

  • customer knowledge
  • customer relationship management
  • Knowledge Management
  • knowledge management systems
Becerra-Fernandez, I. Sabherwal, R. (2001). Organization knowledge management: a contingency perspective, Journal of Management Information Systems 18: 23–55.
Belbaly, N. Benbya, H. Meissonier, R. (2007). An empirical investigation of the customer knowledge creation impact on NPD Performance, in: Proceedings of 40th Annual Hawaii International Conference on System Sciences.
Bose, R. (2009). Advanced analytics: opportunities and challenges, Industrial Management +Data Systems 109: 155–172.
Chen, Y. Su, C. (2006). A kano-CKM model for customer knowledge discovery, Total Quality Management & Business Excellence 17:589–608.
Coussement, K. Van den Poel, D. (2008). Integrating the voice of customers through call center emails into a decision support system for churn prediction, Informatio &Management 45: 164–174.
Gable, G.G. Sedera, D. Chan, T. (2008). Re-conceptualizing information system success: the IS-impact measurement model, Journal of the Association for Information Systems 9:377–408.
Garcia-Murillo, M. Annabi, H. (2002). Customer knowledge management, Journal of the Operational Research Society 53: 875–884.
Iriana, R. Buttle, F. (2007). Strategic, operational, and analytical customer relationship management, Journal of Relationship Marketing 5: 23–42.
Karakostas, B. Kardaras, D. Papathanassiou, E. (2005). The state of CRM adoption by the financial services in the UK: an empirical investigation, Information & Management, 42: 853–863.
Khalifa, M. (2008). Knowledge management systems success: a contingency perspective, Journal of Knowledge Management 12: 119–132.
King, S.F. Burgess, T.F. (2008). Understanding success and failure in customer relationship management, Industrial Marketing Management 37: 421.
Kong, L. Yu, K. Hou, K. (2010). An analytical CRM based on customer knowledge, IEEE 17Th International Conference on Industrial Engineering and Engineering Management (IE&EM), 20101641–1645.
Lee, S.M. Hong, S. (2002). An enterprise-wide knowledge management system infrastruc- ture, Industrial Management & Data Systems 102: 17–25.
Marwick, A. (2001). Knowledge management technology, BM Systems Journal 40: 814–830.
Myers, M.D. (2009). Qualitative Research in Business and Management, Sage Publications, London, England.
Nonaka, I. (1994). A dynamic theory of organizational knowledge creation, Organization Science 5: 14–37.
Nonaka, I. Krogh, G.V. Voelpel, S. (2006). Organizational knowledge creation theory: evolutionary paths and future advances, Organization Studies 27:1179-1208.
Parent, M. Gallupe, R.B. Salisbury, W.D. Handelman, J.M. (2000). Knowledge creation in focus groups: can group technologies help? Information & Management 38: 47–58.
Petter, S. Delone, W. Mclean, E. (2008). Measuring information systems success: models, dimensions, measures, and interrelationships, European Journal of Information Systems 17: 236–263.
Shang, S.S.C. Li, E.Y. Wu, Y. Hou, O.C.L. (2011). Understanding Web 2.0 service models: a knowledge creating perspective, Information & Management 48:178–184.
Teo, T.S.H. Devadoss, P. Pan, S.L. (2006). Towards a holistic perspective of customer relationship management (CRM) implementation: a case study of the Housing and Development Board, Singapore, Decision Support Systems 42:1613–1627.
Toriani, S. Angeloni, M.T. (2011). CRM as a support for knowledge management and customer relationship, Journal of Information Systems and Technology Manage-ment 8: 87–108.
Xu, M. Walton, J. (2005). Gaining customer knowledge through analytical CRM, Industrial Management + Data Systems 105: 955–971.
CAPTCHA Image