Behera, R., & Das, K. (2017). A Survey on Machine Learning: Concept, Algorithms and Applications. International Journal of Innovative Research in Computer and Communication Engineering, 2.
Bhandal, R., McRiton, R., Kavanagh, R. E., & Brown, A. (2022). The application of digital twin technology in operations and supply chain management: a bibliometric review.
Supply Chain Management-an International Journal,
27(2), 182-206.
https://doi.org/10.1108/scm-01-2021-0053
Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M., & Wortmann, A. (2020, 2020//). Model-Driven Development of a Digital Twin for Injection Molding. Advanced Information Systems Engineering, Cham.
Brunthaler, J., Grabski, P., Sturm, V., Lubowski, W., & Efrosinin, D. (2022). On the Problem of State Recognition in Injection Molding Based on Accelerometer Data Sets.
SENSORS,
22(16), Article 6165.
https://doi.org/10.3390/s22166165
Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing.
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT,
49, 86-97.
https://doi.org/10.1016/j.ijinfomgt.2019.03.004
Erol, T., Mendi, A. F., & Doğan, D. (2020, 22-24 Oct. 2020). The Digital Twin Revolution in Healthcare. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Hürkamp, A., Gellrich, S., Ossowski, T., Beuscher, J., Thiede, S., Herrmann, C., & Dröder, K. (2020). Combining Simulation and Machine Learning as Digital Twin for the Manufacturing of Overmolded Thermoplastic Composites. Journal of Manufacturing and Materials Processing, 4(3).
Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019). Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility. In D. Ivanov, A. Dolgui, & B. Sokolov (Eds.),
HANDBOOK OF RIPPLE EFFECTS IN THE SUPPLY CHAIN (Vol. 276, pp. 309-332).
https://doi.org/10.1007/978-3-030-14302-2_15
Kitayama, S., Ishizuki, R., Takano, M., Kubo, Y., & Aiba, S. (2019). Optimization of mold temperature profile and process parameters for weld line reduction and short cycle time in rapid heat cycle molding.
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,
103(5-8), 1735-1744.
https://doi.org/10.1007/s00170-019-03685-3
Koch, V., Kuge, S., Geissbauer, R., & Schrauf, S. (2014). Industry 4.0: Opportunities and challenges of the industrial internet. Strategy & PwC, 5-50.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification.
IFAC-PapersOnLine,
51(11), 1016-1022.
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
Kuo, C. C., & Xu, W. C. (2018). Effects of different cooling channels on the cooling efficiency in the wax injection molding process.
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,
98(1-4), 887-895.
https://doi.org/10.1007/s00170-018-2345-7
Lacueva-Pérez, F. J., Hermawati, S., Amoraga, P., Salillas-Martínez, R., Hoyo-Alonso, R. d., & Lawson, G. (2022). SHION (Smart tHermoplastic InjectiON): An Interactive Digital Twin Supporting Real-Time Shopfloor Operations.
IEEE Internet Computing,
26(3), 23-32.
https://doi.org/10.1109/MIC.2020.3047349
Lee, D., & Lee, S. (2021). Digital Twin for Supply Chain Coordination in Modular Construction.
APPLIED SCIENCES-BASEL,
11(13), Article 5909.
https://doi.org/10.3390/app11135909
Li, X., Cao, J. R., Liu, Z. G., & Luo, X. G. (2020). Sustainable Business Model Based on Digital Twin Platform Network: The Inspiration from Haier's Case Study in China.
SUSTAINABILITY,
12(3), Article 936.
https://doi.org/10.3390/su12030936
Liao, Y., Deschamps, F., Loures, E. d. F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal.
International Journal of Production Research,
55(12), 3609-3629.
https://doi.org/10.1080/00207543.2017.1308576
Lin, X., Chen, W., Zhou, Z., Li, J., Zhao, Y., & Zhang, X. (2025). A five-dimensional digital twin framework driven by large language models-enhanced RL for CNC systems.
Robotics and Computer-Integrated Manufacturing,
95, 103009.
https://doi.org/https://doi.org/10.1016/j.rcim.2025.103009
Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019). Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry.
Computers in Industry,
109, 134-152.
https://doi.org/10.1016/j.compind.2019.04.011
Martowibowo, S. Y., & Kaswadi, A. (2017). Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow.
CHINESE JOURNAL OF MECHANICAL ENGINEERING,
30(2), 398-406.
https://doi.org/10.1007/s10033-017-0081-9
Mazzei, D., Baldi, G., Fantoni, G., Montelisciani, G., Pitasi, A., Ricci, L., & Rizzello, L. (2020). A Blockchain Tokenizer for Industrial IOT trustless applications.
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,
105, 432-445.
https://doi.org/10.1016/j.future.2019.12.020
Mianehrow, H., & Abbasian, A. (2017). Energy monitoring of plastic injection molding process running with hydraulic injection molding machines.
JOURNAL OF CLEANER PRODUCTION,
148, 804-810.
https://doi.org/10.1016/j.jclepro.2017.02.053
Rehmer, A., Klute, M., Heim, H.-P., & Kroll, A. (2024). Chapter 4 - A Digital Twin for part quality prediction and control in plastic injection molding. In P. Mercorelli, W. Zhang, H. Nemati, & Y. Zhang (Eds.),
Modeling, Identification, and Control for Cyber- Physical Systems Towards Industry 4.0 (pp. 79-109). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-32-395207-1.00014-7
Sapounas, I., Vosniakos, G. C., & Papazetis, G. (2020). A simulation-based robust methodology for operator guidance on injection moulding machine settings.
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM,
14(2), 519-533.
https://doi.org/10.1007/s12008-020-00646-z
Singh, G., Pradhan, M. K., & Verma, A. (2018). Multi Response optimization of injection moulding Process parameters to reduce cycle time and warpage MATERIALS TODAY-PROCEEDINGS,
Wang, L., Deng, T. H., Shen, Z. J. M., Hu, H., & Qi, Y. Z. (2022). Digital twin-driven smart supply chain.
Frontiers of Engineering Management,
9(1), 56-70.
https://doi.org/10.1007/s42524-021-0186-9
Wang, Z., Feng, W., Ye, J., Yang, J., & Liu, C. (2021). A Study on Intelligent Manufacturing Industrial Internet for Injection Molding Industry Based on Digital Twin.
Complexity,
2021, 8838914.
https://doi.org/10.1155/2021/8838914
Zhang, K., Zhou, H.-Y., Baptista-Hon, D. T., Gao, Y., Liu, X., Oermann, E., Xu, S., Jin, S., Zhang, J., Sun, Z., Yin, Y., Razmi, R. M., Loupy, A., Beck, S., Qu, J., & Wu, J. (2024). Concepts and applications of digital twins in healthcare and medicine.
Patterns,
5(8), 101028.
https://doi.org/https://doi.org/10.1016/j.patter.2024.101028
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
ارسال نظر در مورد این مقاله