Arani, M., Momenitabar, M., Ebrahimi, Z. D., & Liu, X. (2021). A Two-Stage Stochastic Programming Model for Blood Supply Chain Management, Considering Facility Disruption and Service Level. arXiv preprint arXiv:2111.02808. https://doi.org/10.48550/arXiv.2111.02808
Arani, M., Chan, Y., Liu, X., & Momenitabar, M. (2021). A lateral resupply blood supply chain network design under uncertainties. Applied mathematical modelling, 93, 165-187. https://doi.org/10.1016/j.apm.2020.12.010
Behroozi, F., Monfared, M. A. S., & Hosseini, S. M. H. (2021). Investigating the conflicts between different stakeholders’ preferences in a blood supply chain at emergencies: a trade-off between six objectives. Soft Computing, 25(21), 13389-13410. https://doi.org/10.1007/s00500-021-06157-7
Deb, K., Sindhya, K., & Hakanen, J. (2016). Multi-objective optimization. In Decision sciences (pp. 161-200). CRC Press.
Fahmihassan, A., Moghari, M., & Ebadati, O. (2020). Prediction of Blood Donations Using Data Mining Based on the Decision Tree Algorithms KNN, SVM, and MLP. Engineering Management and Soft Computing, 6(1), 109-129. doi: 10.22091/jemsc.2018.1278.
Farrokhizadeh, E., Seyfi-Shishavan, S. A., & Satoglu, S. I. (2022). Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent. Annals of Operations Research, 319(1), 73-113. https://doi.org/10.1007/s10479-021-03978-5
Farshidi, Y., Ghasemi, R., & Sharafian Ardekani, A. (2022). Designing a Neural Observer to Estimate the State Variables of the Dynamical System of a Specific Class of Leukaemia. Engineering Management and Soft Computing, 7(2), 124-144. doi: 10.22091/jemsc.2018.1000.1041
Fazli-Khalaf, M., Khalilpourazari, S., & Mohammadi, M. (2019). Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Annals of operations research, 283, 1079-1109. https://doi.org/10.1007/s10479-017-2729-3
Ghorashi, S. B., Hamedi, M., & Sadeghian, R. (2020). Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO. Neural computing and applications, 32, 12173-12200. https://doi.org/10.1007/s00521-019-04343-1
Hosseini, S. M. H., Behroozi, F., & Sana, S. S. (2023). Multi-objective optimization model for blood supply chain network design considering cost of shortage and substitution in disaster. RAIRO-Operations Research, 57(1), 59-85. https://doi.org/10.1051/ro/2022206
Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). Journal of Ambient Intelligence and Humanized Computing, 11, 1085-1104. https://doi.org/10.1007/s12652-019-01315-0
Hosseini-Motlagh, S. M., Samani, M. R. G., & Cheraghi, S. (2020). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio-economic planning sciences, 70, 100725. https://doi.org/10.1016/j.seps.2019.07.001
Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Toward a coordination of inventory and distribution schedules for blood in disasters. Socio-Economic Planning Sciences, 72, 100897. https://doi.org/10.1016/j.seps.2020.100897
Khalilpourazari, S., & Arshadi Khamseh, A. (2019). Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Annals of Operations Research, 283, 355-393. https://doi.org/10.1007/s10479-017-2588-y
Khalilpourazari, S., Soltanzadeh, S., Weber, G. W., & Roy, S. K. (2020). Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Annals of Operations Research, 289, 123-152. https://doi.org/10.1007/s10479-019-03437-2
Moslemi, S., & Pasandideh, S. H. R. (2021). A location-allocation model for quality-based blood supply chain under IER uncertainty. RAIRO-operations research, 55, S967-S998. https://doi.org/10.1051/ro/2020035
Namazian, A. and Babazadeh, R. (2025). Designing supply chain of blood under uncertainty: A case study. International Journal of Research in Industrial Engineering, 14(1), 177-195. doi: 10.22105/riej.2024.436665.1415
Nahofti Kohneh, J., Derikvand, H., Amirdadi, M., & Teimoury, E. (2023). A blood supply chain network design with interconnected and motivational strategies: A case study. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8249-8269. https://doi.org/10.1007/s12652-021-03594-y
Rashidzadeh, E., Hadji Molana, S. M., Soltani, R., & Hafezalkotob, A. (2021). Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. Journal of Modelling in Management, 16(4), 1376-1402. https://doi.org/10.1108/JM2-09-2020-0241
Rezaei Kallaj, M., Abolghasemian, M., Moradi Pirbalouti, S., Sabk Ara, M., & Pourghader Chobar, A. (2021). Vehicle routing problem in relief supply under a crisis condition considering blood types. Mathematical Problems in Engineering, 2021, 1-10. https://doi.org/10.1155/2021/7217182
Razavi, N., Gholizadeh, H., Nayeri, S., & Ashrafi, T. A. (2021). A robust optimization model of the field hospitals in the sustainable blood supply chain in crisis logistics. Journal of the Operational Research Society, 72(12), 2804-2828. https://doi.org/10.1080/01605682.2020.1821586
Salehi, F., Mahootchi, M., & Husseini, S. M. M. (2019). Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible earthquake in Tehran. Annals of operations research, 283, 679-703. https://doi.org/10.1007/s10479-017-2533-0
Samani, M. R. G., & Hosseini-Motlagh, S. M. (2019). An enhanced procedure for managing blood supply chain under disruptions and uncertainties. Annals of Operations Research, 283(1-2), 1413-1462. https://doi.org/10.1007/s10479-018-2873-4
Seyfi-Shishavan, S. A., Donyatalab, Y., Farrokhizadeh, E., & Satoglu, S. I. (2023). A fuzzy optimization model for designing an efficient blood supply chain network under uncertainty and disruption. Annals of operations research, 331(1), 447-501. https://doi.org/10.1007/s10479-021-04123-y
Yang, H., Yin, Y., Wang, D., Cheng, T. C. E., Zhang, R., & Hu, H. (2024). An integrated blood supply chain network design during a pandemic. International Journal of Production Research, 63(9), 3384–3409. https://doi.org/10.1080/00207543.2024.2396511
Yousefi Nejad, M., Khayat Rasouli, M., & Khalilpour, Z. (2022). Optimizing Red Blood Cell Consumption Using Markov's Decision-Making Process (Case study: Blood Bank of Zanjan Province Blood Transfusion Center). Engineering Management and Soft Computing, 8(1), 71-84. doi: 10.22091/jemsc.2019.1296
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary computation, 7(2), 117-132.
https://doi.org/10.1109/TEVC.2003.810758
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Akbari, A. H., Jafari, M., & Akhavan, P. (2025). Deep Reinforcement Learning Algorithm: Dynamic Job Shop Scheduling Problem with Order Rejection and Inventory. Journal of Advanced Manufacturing Systems. https://doi.org/10.1142/S0219686727500156
ارسال نظر در مورد این مقاله