Belhor, M., El-Amraoui, A., Jemai, A., & Delmotte, F. (2023). Multi-objective evolutionary approach based on K-means clustering for home health care routing and scheduling problem. Expert Systems with Applications, 213, 119035. https://doi.org/10.1016/j.eswa.2022.119035
Chobar, A. P., Adibi, M. A., & Kazemi, A. (2022). Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and meta-heuristic algorithms. Environment, Development and Sustainability, 1-28. https://doi.org/10.1007/s10668-022-02350-2
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017
Delshad, M. M., Chobar, A. P., Ghasemi, P., & Jafari, D. (2024). Efficient Humanitarian Logistics: Multi-Commodity Location–Inventory Model Incorporating Demand Probability and Consumption Coefficients. Logistics, 8(1), 9. https://doi.org/10.3390/logistics8010009
Fathi Hafshejani, K., Bagheri Sorkhi, M., & Modiri, M. (2023). Integrated hybrid model of sustainable supply chain in cement industry. Engineering Management and Soft Computing, 9(1), 1-18. doi: 10.22091/JEMSC.2021.6422.1144
Jiang, Y., Dai, P., Fang, P., Zhong, R. Y., Zhao, X., & Cao, X. (2022). A2-LSTM for predictive maintenance of industrial equipment based on machine learning. Computers & Industrial Engineering, 172, 108560. https://doi.org/10.1016/j.cie.2022.108560
Nguyen, T. H., & Jung, J. J. (2021). Swarm intelligence-based green optimization framework for sustainable transportation. Sustainable Cities and Society, 71, 102947. https://doi.org/10.1016/j.scs.2021.102947
Niavand, M., Adibi, M. A., & Pourghader Chobar, A. (2024). Selection of green supplier by multi-moora combination method and two-stage clustering. Engineering Management and Soft Computing, 10(1), 14-49. doi: 10.22091/jemsc.2024.10977.1181
sazegari, S., davoodi, S. M., & goli, A. (2024). Designing a green supply chain pricing model with a multi-criteria decision-making approach and game theory (case study: home appliance industry). Engineering Management and Soft Computing, 10(1), 92-122. doi: 10.22091/jemsc.2024.11144.1191
Sharma, D. K., Brahmachari, S., Singhal, K., & Gupta, D. (2022). Data driven predictive maintenance applications for industrial systems with temporal convolutional networks. Computers & Industrial Engineering, 169, 108213. https://doi.org/10.1016/j.cie.2022.108213
Yadav, D. K., Kaushik, A., & Yadav, N. (2024). Predicting machine failures using machine learning and deep learning algorithms. Sustainable Manufacturing and Service Economics, 3, 100029.
https://doi.org/10.1016/j.smse.2024.100029
Hosseini, S., Rezaeenour, J., Masoumi, M., & Akbari, A. H. (2021). A The Evaluation of Knowledge Management in Supply Chain Using EFQM Framework, Fuzzy Multi-Attribute Decision Making and Multi-Objective Programming. Industrial Management Studies, 19(60), 193-235.
Rezaenoor, J., Saadi, G., & Akbari, A. (2019). Design of a Decision Support System to Diagnose and Predict Heart Disease using Artificial Neural Network; a case study (Ayatollah Golpayegani Hospital in Qom). Management Strategies in Health System, 3(4), 320-331.
ارسال نظر در مورد این مقاله