A. B. Asma and P. J. B. Aranas, "Forecasting Earthquake Using Machine Learning," Journal of Artificial Intelligence, Machine Learning and Neural Network, vol. 4, no. 3, pp. 31–40, Apr.–May 2024, DOI:10.55529/jaimlnn.43.31.40
A. Bhatia, S. Pasari, and A. Mehta, "Earthquake forecasting using artificial neural networks," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, no. 5, pp. 823–827, 2018. https://doi.org/10.5194/isprs-archives-XLII-5-823-2018
A. Gupta and R. Kumar, " A REAL TIME PERFORMANCE BASED MODEL FOR PREDICTING THE EARTHQUAKE EARLY WARNING ALARMS USING A MACHINE LEARNING TECHNIQUE," IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4567-4578,June2021. DOI: http://doi.org/10.26480/mjg.02.2024.115.120
B. Aslam, A. Zafar, U. Khalil, and U. Azam, “Seismic activity prediction of the northern part of Pakistan from novel machine learning technique,” J. Seismol., vol. 25, pp. 639–652, 2021. DOI: 10.1007/s10950-021-09982-3
H. Ebrahimian, F. Jalayer, B. Maleki Asayesh, S. Hainzl, and H. Zafarani, "Improvements to seismicity forecasting based on a Bayesian spatio-temporal ETAS model," Scientific Reports, vol. 12, Article no. 20970, 2022, https://doi.org/10.1038/s41598-022-24080-1
I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*, Cambridge, MA: MIT Press, 2016.
J. P. Huang, X. A. Wang, Y. Zhao, C. Xin, and H. Xiang, "Large earthquake magnitude prediction in Taiwan based on deep learning neural network," Neural Network World, vol. 28, no. 2, pp. 149–160, 2018, DOI: 10.14311/NNW.2018.28.009
J. Reyes, A. Morales-Esteban, and F. Martínez-Álvarez, “Neural networks to predict earthquakes in Chile,” Appl. Soft Comput., vol. 13, no. 2, pp. 1314–1328, 2013. DOI: 10.1016/j.asoc.2012.10.014
Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2001). An online algorithm for segmenting time series. Proceedings IEEE International Conference on Data Mining, pp. 289–296. https://doi.org/10.1109/ICDM.2001.989531
K. M. Asim, A. Idris, T. Iqbal, and F. Martínez-Álvarez, “Seismic indicators based earthquake predictor systemusing Genetic Programming and AdaBoost classification,” Soil Dyn. Earthq. Eng., vol. 111, pp. 1–7, 2018. DOI: 10.1016/j.soildyn.2018.04.020
Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML).
M. Apriani, S. K. Wijaya, and Daryono, "Earthquake magnitude estimation based on machine learning: Application to earthquake early warning system," Journal of Physics: Conference Series, vol. 1951, no. 1, p. 012057, 2021. DOI 10.1088/1742-6596/1951/1/012057
M. Asim, J. Taboada, A. García-Jerez, and E. Suárez-Rey, “Earthquake prediction model using support vector Programming and hybrid neural networks,” PLOS ONE, vol. 13, no. 12, p. e0199004, 2018, doi:10.1371/journal.pone.0199004.
M. Bhatia, T. A. Ahanger, and A. Manocha, "Artificial intelligence based real-time earthquake prediction," Engineering Applications of Artificial Intelligence, vol. 120, p. 105856, 2023. DOI: 10.1016/j.engappai.2023.105856
M. H. Al Banna, K. A. Taher, M. S. Kaiser, M. Mahmud, M. S. Rahman, A. S. Hosen, and G. H. Cho, "Application of artificial intelligence in predicting earthquakes: State-of-the-art and future challenges," IEEE Access, vol. 8, pp. 192880–192923, 2020. DOI: 10.1109/ACCESS.2020.3029859
M. Merdasse, M. Hamdache, J. A. Peláez, J. Henares, and T. Medkour, "Earthquake Magnitude and Frequency Forecasting in Northeastern Algeria using Time Series Analysis," Applied Sciences, vol. 13, no. 3, p. 1566, 2023, DOI:10.3390/app13031566
M. T. Green and S. K. Patel, "Machine learning approaches for earthquake risk assessment: A comprehensive survey," IEEE Reviews in Geosciences, vol. 29, pp. 102-118, 2022. doi.org/10.1016/j.pdisas.2024.100398
N. B. Jarah, A. H. H. Alasadi, and K. M. Hashim, "Earthquake prediction technique: a comparative study," IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, pp. 1026–1032, 2023، DOI:10.11591/ijai.v12.i3.pp1026-1032
Panakkat and H. Adeli, “Neural network models for earthquake magnitude prediction using multiple seismicity indicators,” Int. J. Neural Syst., vol. 17, no. 1, pp. 13–33, 2007.
S. Ommi and M. Hashemi, "Machine learning technique in the north Zagros earthquake prediction," Applied Computing and Geosciences, vol. 22, p. 100163, 2024. DOI:10.1016/j.acags.2024.100163
T. Perol, M. Gharbi, and M. A. Denolle, "Convolutional neural network for earthquake detection and location," Science Advances, vol. 4, no. 2, p. e1700578, Feb. 2018, DOI: 10.1126/sciadv.1700578
T. Wang, J. D. Griffin, M. Brenna, D. Fletcher, J. Zeng, M. Stirling, P. W. Dillingham, and J. Kang, "Earthquake forecasting from paleoseismic records," Nature Communications, vol. 15, p. 1944, Mar. 2024, https://doi.org/10.1038/s41467-024-46258-z
Z. Bao, J. Zhao, P. Huang, S. Yong, and X. Wang, “A deep learning-based electromagnetic signal for earthquake magnitude prediction,” Sensors, vol. 21, no. 13, p. 4434, Jun. 2021. doi: 10.3390/s21134434.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7.
Hosseini, S. J., Rezaeenoor, J., Akbari, A. H., & Marjani, M. R. (2021). Operating Room Scheduling with Respect to Dynamic Facilities and Surgeon Specialty. Industrial Management Journal, 13(2), 194-221.
Hosseini, S., REZAEENOUR, J., & Akbari, A. (2021). The Evaluation of Knowledge Management and Sharing in Supply Chain Using EFQM Framework, Fuzzy MCDM and Multi-Objective Programming.
ارسال نظر در مورد این مقاله