Aboulfazl Ebrahimi, Mahboubeh Shamsi, & Morteza Mohajjel. (2023). Optimal adjustment of deep neural network parameters in Estimation of Missing Data of Vital Signs in Wireless Body Area Networks. Enginiiring Management and Soft Computing, 9 (1)., 9(1), 162–188. https://doi.org/10.22091/JEMSC.2022.7422.1162
Bakhtiarnia, A., Zhang, Q., & Iosifidis, A. (2021). Multi-Exit Vision Transformer for Dynamic Inference (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2106.15183
Bakhtiarnia, A., Zhang, Q., & Iosifidis, A. (2022). Single-Layer Transformers for More Accurate Early Exits with Less Overhead. https://doi.org/10.5281/ZENODO.6737409
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, May 26). End-to-End Object Detection with Transformers. arXiv.Org. https://arxiv.org/abs/2005.12872v3
Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., & Gao, W. (2020, December 1). Pre-Trained Image Processing Transformer. arXiv.Org. https://arxiv.org/abs/2012.00364v4
Chen, Y., Pan, X., Li, Y., Ding, B., & Zhou, J. (2023, December 8). EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism. arXiv.Org. https://arxiv.org/abs/2312.04916v3
Daghero, F., Burrello, A., Pagliari, D. J., Benini, L., Macii, E., & Poncino, M. (2022, April 7). Energy-Efficient Adaptive Machine Learning on IoT End-Nodes With Class-Dependent Confidence. arXiv.Org. https://doi.org/10.1109/ICECS49266.2020.9294863
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020, October 22). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv.Org. https://arxiv.org/abs/2010.11929v2
Han, Y., Huang, G., Song, S., Yang, L., Wang, H., & Wang, Y. (2021, February 9). Dynamic Neural Networks: A Survey. arXiv.Org. https://arxiv.org/abs/2102.04906v4
Islam, B., & Nirjon, S. (2020). Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3), 1–29. https://doi.org/10.1145/3411808
Jahier Pagliari, D., Panini, F., Macii, E., & Poncino, M. (2019). Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural Networks. Proceedings of the 2019 Great Lakes Symposium on VLSI, 69–74. https://doi.org/10.1145/3299874.3317974
Jeon, S., Choi, Y., Cho, Y., & Cha, H. (2023). HarvNet: Resource-Optimized Operation of Multi-Exit Deep Neural Networks on Energy Harvesting Devices. Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services, 42–55. https://doi.org/10.1145/3581791.3596845
Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 32. https://doi.org/10.1145/1274858.1274870
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Li, X., Lou, C., Zhu, Z., Chen, Y., Shen, Y., Ma, Y., & Zou, A. (2022, June 9). Predictive Exit: Prediction of Fine-Grained Early Exits for Computation- and Energy-Efficient Inference. arXiv.Org. https://arxiv.org/abs/2206.04685v2
Loshchilov, I., & Hutter, F. (2017, November 14). Decoupled Weight Decay Regularization. arXiv.Org. https://arxiv.org/abs/1711.05101v3
Lv, M., & Xu, E. (2022). Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges. IEEE Access, 10, 124999–125014. https://doi.org/10.1109/ACCESS.2022.3225092
Morteza Nourmehdi,Mohammad Hadi Zahedi. (n.d.). Effective Indicators in Energy Management using the Internet of Things (IoT). https://doi.org/10.22091/JEMSC.2025.11119.1188
Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan, F. S., & Yang, M.-H. (2021, May 21). Intriguing Properties of Vision Transformers. arXiv.Org. https://arxiv.org/abs/2105.10497v3
Panda, P., Sengupta, A., & Roy, K. (2016). Conditional Deep Learning for Energy-Efficient and Enhanced Pattern Recognition (arXiv:1509.08971). arXiv. https://doi.org/10.48550/arXiv.1509.08971
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., & Dosovitskiy, A. (2021, August 19). Do Vision Transformers See Like Convolutional Neural Networks? arXiv.Org. https://arxiv.org/abs/2108.08810v2
Reyhaneh Dehghan, Marjan Naderan Tahan, & Seyyed Enayatallah Alavi. (2024). Combining Convolutional Neural Network (CNN) and Grad-CAM for Parkinson’s Disease Prediction and Visual Explanation. https://doi.org/10.22091/jemsc.2024.10828.1180
Scardapane, S., Scarpiniti, M., Baccarelli, E., & Uncini, A. (2020, April 27). Why should we add early exits to neural networks? arXiv.Org. https://doi.org/10.1007/s12559-020-09734-4
Shen, L., Sun, Y., Yu, Z., Ding, L., Tian, X., & Tao, D. (2023, April 7). On Efficient Training of Large-Scale Deep Learning Models: A Literature Review. arXiv.Org. https://arxiv.org/abs/2304.03589v1
Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient Transformers: A Survey (arXiv:2009.06732). arXiv. https://doi.org/10.48550/arXiv.2009.06732
Teerapittayanon, S., McDanel, B., & Kung, H. T. (2017). BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks (arXiv:1709.01686). arXiv. https://doi.org/10.48550/arXiv.1709.01686
Xu, G., Hao, J., Shen, L., Hu, H., Luo, Y., Lin, H., & Shen, J. (2023). LGViT: Dynamic Early Exiting for Accelerating Vision Transformer. Proceedings of the 31st ACM International Conference on Multimedia, 9103–9114. https://doi.org/10.1145/3581783.3611762
Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H. S., & Zhang, L. (2021). Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers (arXiv:2012.15840). arXiv. https://doi.org/10.48550/arXiv.2012.15840
Zhou, L., Zhou, Y., Corso, J. J., Socher, R., & Xiong, C. (2018). End-to-End Dense Video Captioning with Masked Transformer (arXiv:1804.00819). arXiv. https://doi.org/10.48550/arXiv.1804.00819
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2021). Deformable DETR: Deformable Transformers for End-to-End Object Detection (arXiv:2010.04159). arXiv.
https://doi.org/10.48550/arXiv.2010.04159
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
ارسال نظر در مورد این مقاله