تحلیل عوامل مؤثر بر طول مدت اقامت بیماران با استفاده از خوشه‌بندی و قوانین انجمنی (مطالعه موردی: بیمارستان امیرالمؤمنین مراغه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران

2 گروه ریاضی، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران

چکیده

یکی از شاخص‌های عمده در ارزیابی عملکرد بیمارستان‌ها و مدیران آنها، متوسط طول مدت اقامت بیماران است؛ با توجه به اهمیت این شاخص در مطالعه حاضر به بررسی عوامل مؤثر بر طول مدت اقامت بیماران بستری پرداخته شده است. این پژوهش با هدف شناسایی عوامل کلیدی تأثیرگذار بر طول مدت اقامت بیماران و ارائه راهکارهای عملی برای بهبود مدیریت تخت‌های بیمارستانی انجام شده است. داده‌های ۲۶۹۰۷ بیمار با استفاده از ارائه مدل‌های خوشه‌بندی الگوریتم‌های خوشه‌بندی (K-Means) و استخراج قوانین انجمنی (Apriori) تحلیل شدند. داده‌ها شامل 10 ستون عددی و گسسته است. متغیرها شامل 10 مورد که به ترتیب عبارتنداز : جنسیت، وضعیت تاهل، بخش بستری، تخصص پزشک، بیمه، تزریق خون، عمل جراحی، نوع ترخیص، سن و طول مدت اقامت می‌باشد. یافته‌ها نشان داد که متغیرهای عمل جراحی و تزریق خون بیشترین تأثیر را بر طول متوسط طول مدت اقامت در بیمارستان دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of factors affecting the length of stay of patients using clustering and association rules (Case study: Amir al-Momenin Hospital, Maragheh)

نویسندگان [English]

  • Mahdi Yousefi Nejad 1
  • Karim Farajian 2
  • Hossein Jaleb 2
1 Department of industrial engineering, Bon.C., Islamic Azad University, Bonab, Iran
2 Department of Mathematics, Bon.C., Islamic Azad University, Bonab, Iran
چکیده [English]

One of the major indicators in evaluating the performance of hospitals and their managers is the average length of stay of patients; given the importance of this indicator, the present study has examined the factors affecting the length of stay of hospitalized patients. This study was conducted with the aim of identifying the key factors affecting the length of stay of patients and providing practical solutions for improving the management of hospital beds. Data from 26,907 patients were analyzed using clustering models, clustering algorithms (K-Means) and association rules extraction (Apriori). The data consists of 10 numerical and discrete columns. The variables include 10 items, which are respectively: gender, marital status, hospitalization department, physician specialty, insurance, blood transfusion, surgery, type of discharge, age, and length of stay. The findings showed that the variables of surgery and blood transfusion have the greatest impact on the average length of stay in the hospital.

کلیدواژه‌ها [English]

  • Data mining
  • clustering
  • length of stay
  • Apriori Algorithm
Amerioun A, Teymourzadeh E, Alijanzadeh M, Hakimzadeh SM. (2014). Research Needs Assessment and Priority Setting for Health Economics : A Mixed method Study in Iran. 16(1):23–8. https://doi.org/10.1017/S1744133105001040
Angadi G, Chen R. (2007). Optimization of patient length of stay at Bridgepoint Hospital. BSc Thesis] Toronto, University of Toronto. https://doi.org/10.1007/s001340050880
Baek H, Cho M, Kim S, Hwang H, Song M, Yoo S. (2018). Analysis of length of hospital stay using electronic health records : A statistical and data mining approach. 1–16. https://doi.org/10.1371/journal.pone.0195901.t004
Dol SM, Jawandhiya PM. (2023). Classification technique and its combination with clustering and association rule mining in educational data mining—A survey. Engineering applications of artificial intelligence. Jun 1;122:106071. https://doi.org/10.1016/j.engappai.2023.106071
Fakhri Nazari, M. Fakhri Nazari, E. & Bakhsh, N. (2023). Presenting a method to reduce the sensitivity of incremental clustering algorithms of XML documents based on collective intelligence algorithms. Enginiiring Management and Soft Computing, 9 (2). 177-187. https://doi.org/10.22091/jemsc.2024.9990.1176
Ghadri N. (2016). Data mining with data algorithms in health trends. J Sci Eng Elit. (In Persian) https://doi.org/10.1177/1460458216678443
Hosseini-Shokouh SM, Sadeghian K, Ameryoun A, Zaboli R. (2019) Organizational factors affecting a patient’s average length of stay in hospital: Systematic review. J Mil Med. 20(6):577–88.                 http:// doi.org /10.1097/BOT.0000000000000221
Khajehali N, Alizadeh S. (2017). Extract critical factors affecting the length of hospital stay of pneumoni patient by data mining (case study: an Iranian hospital). Artif Intell Med.  https://doi.org/10.1016/j.artmed.2017.06.010
Mohammadkarim B, Jamil S, Pejman H, Seyyed MH, Mostafa N. (2011). Combining multiple indicators to assess hospital performance in Iran using the Pabon Lasso Model. Australas Med J. 4(4):175. https://doi.org/10.4066/AMJ.2011.620
Molaee Fard, R. (2023). Provide a method to diagnose and optimize diabetes using data mining methods  and firefly algorithm. Enginiiring Management and Soft Computing, 9 (1). 36-48 https://doi.org/10.22091/JEMSC.2022.6575.1147
 Nasiripour AA, Riyahi L, Gholamipour MA, others. (2010)The effect of the presence of full time gynecologist on length of stay among inpatient of gynecology ward in yazd social security hospital, 2008. J Med Counc Islam Repub Iran. 28(2):169–235. https://doi.org/10.1016/j.phrp.2016.04.008
Saeidi-Mobarakeh, Z. & Amoozad Khalili, H. (2024). Nonlinear Multi-Objective Optimization Model for Production Planning Based on Fuzzy Logic and Machine Learning. Enginiiring Management and Soft Computing, 10 (1). 155-189. https://doi.org/10.22091/jemsc.2024.11186.1197
Siddique, S.M., Tipton, K., Leas, B., Greysen, S.R., Mull, N.K., Lane-Fall, M., McShea, K. and Tsou, A.Y., (2021). Interventions to reduce hospital length of stay in high-risk populations: a systematic review. JAMA network open, 4(9), pp.e2125846-e2125846. doi:10.1001/jamanetworkopen.2021.25846
Siskou O, Kaitelidou ÆD. (2009). Private expenditure and the role of private health insurance in Greece : status quo and future trends. 467–74. https://doi.org/10.1007/s10198-009-0164-3
Tayefi M, Tajfard M, Saffar S, Hanachi P, Reza A, Esmaeily H, et al. (2017). Computer Methods and Programs in Biomedicine hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm. Comput Methods Programs Biomed. 141:105–9. https://doi.org/10.1016/j.cmpb.2017.02.001
Yaghoubi M, Agha Rahimi Z, Javadi M. (2013). Factors affecting in productivity index in Noor & Ali Asghar hospital in Esfahan base on hierarchical analysis process technique. Heal Inf Manag. 10(4):600. https://doi.org/10.22122/him.v10i4.657
Yang H, Chen YP. (2015). Expert Systems with Applications Data mining in lung cancer pathologic staging diagnosis : Correlation between clinical and pathology information. Expert Syst Appl. 42(15–16):6168–76. https://doi.org/10.1016/j.eswa.2015.03.019
Yaya, L.H.P., Fortià, M.F., Canals, C.S. et al. (2015). Service quality assessment of public transport and the implication role of demographic characteristics. Public Transp 7, 409–428.  https://doi.org/10.1007/s12469-014-0099-7
CAPTCHA Image