طراحی و تبیین مدل شبیه‌سازی زنجیره تأمین خون در بستر شبکه ابری با رویکرد پویایی‌شناسی سیستم

نوع مقاله : مقاله پژوهشی

نویسندگان

دپارتمان مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران

10.22091/jemsc.2025.11210.1201

چکیده

در این مقاله، با بهره‌گیری از رویکرد پویایی‌شناسی سیستم، به مطالعه رفتار زنجیره تأمین خون از نقطه‌نظر شاخص کلیدی عملکرد "انحراف از پوشش موجودی مطلوب" و متغیرهای کلیدی شامل ‌"مطلوبیت اهدا"، "صف اهدا" و "تعداد مراکز دائمی جمع‌آوری خون" می‌پردازیم. پایش انحرافات مثبت و منفی از سطح موجودی مطلوب خون کمک می‌کند تا میزان اتلاف و کمبود خون در زنجیره به حداقل برسد. در این راستا، ابتدا متغیرهای کلیدی را شناسایی کرده و ساختار زنجیره تأمین خون را براساس این متغیرها و با کمک نمودارهای مناسب، اجرا و اعتبارسنجی می‌کنیم. سپس، در راستای کشف راهکار و سیاستی که به بهبود رفتار سیستم از دیدگاه شاخص مورد نظر کمک کند، سیاست بکارگیری رایانش ابری در زنجیره تأمین خون را پیشنهاد می‌کنیم. هدف ما بررسی این موضوع است که آیا به اشتراک‌گذاری اطلاعات در سراسر زنجیره تأمین خون از طریق شبکه ابری ‌می‌تواند عملکرد زنجیره را بهبود بخشد یا خیر؟ نتایج این مقاله نشان می‌دهد که زنجیره تأمین خون ابری از دیدگاه معیارهای مورد مطالعه، عملکرد بهتری نسبت به زنجیره تأمین خون سنتی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

E-Healthcare Improvement through the Design of a Cloud-Based Blood Supply Chain: A System Dynamics Approach

نویسندگان [English]

  • Saeed Abdolhossein Zadeh
  • Mostafa Zandieh
  • Akbar Alam-Tabriz
Department of Industrial Management, Management and Accounting Faculty, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In this paper, we adopt a system dynamics approach to examine the behavior of the blood supply chain (BSC), focusing on the key performance indicator "deviation from optimal stock coverage" and the key factors "donation utility," "donation queue," and "the number of established blood collection centers." Tracking both positive and negative deviations from the ideal inventory level is crucial for minimizing blood wastage and shortages. To achieve our objectives, we first identify the key variables, construct a causal loop diagram, and validate the model’s structure. Next, we develop a stock-and-flow diagram, run simulations, and validate the model’s behavior. Finally, we propose adopting cloud computing to enhance information sharing within the BSC, thereby improving system performance. Our findings indicate that a cloud-based BSC outperforms the conventional model in terms of the evaluated criteria.

کلیدواژه‌ها [English]

  • Blood supply chain
  • System dynamics
  • Cloud computing
  • Information sharing
  • Performance improvement
Abbas, H., Zhao, L., Gong, X., & Faiz, N. (2023). The perishable products case to achieve sustainable food quality and safety goals implementing on-field sustainable supply chain model. Socio-Economic Planning Sciences, 87, 101562. https://doi.org/10.1016/j.seps.2023.101562.
Abdelmaboud, A., Jawawi, D. N., Ghani, I., Elsafi, A., & Kitchenham, B. (2015). Quality of service approaches in cloud computing: A systematic mapping study. Journal of Systems and Software101, 159-179. https://doi.org/10.1016/j.jss.2014.12.015.
Alajmi, Q., Sadiq, A., Kamaludin, A., & Al-Sharafi, M. A. (2017, May). E-learning models: The effectiveness of the cloud-based E-learning model over the traditional E-learning model. In 2017 8th International Conference on Information Technology (ICIT) (pp. 12-16). IEEE. DOI: 10.1109/ICITECH.2017.8079909.
Ali, O., & Osmanaj, V. (2020). The role of government regulations in the adoption of cloud computing: A case study of local government. Computer Law & Security Review36, 105396. https://doi.org/10.1016/j.clsr.2020.105396.
Aminullah, E., & Erman, E. (2021). Policy innovation and emergence of innovative health technology: The system dynamics modelling of early COVID-19 handling in Indonesia. Technology in Society, 66, 101682. https://doi.org/10.1016/j.techsoc.2021.101682.
Battarra, I., Accorsi, R., Lupi, G., Manzini, R., & Sirri, G. (2022). Location-allocation problem in a multi-terminal cross-dock distribution network for palletized perishables delivery. Transportation Research Procedia, 67, 172-181. https://doi.org/10.1016/j.trpro.2022.12.048.
Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1-16. https://doi.org/10.1016/j.ejor.2011.05.026.
Ben Elmir, W., Hemmak, A., & Senouci, B. (2023). Smart platform for data blood bank management: forecasting demand in blood supply chain using machine learning. Information14(1), 31. https://doi.org/10.3390/info14010031.
Budak, A., & Çoban, V. (2021). Evaluation of the impact of blockchain technology on supply chain using cognitive maps. Expert Systems with Applications, 184, 115455. https://doi.org/10.1016/j.eswa.2021.115455.
Cassidy, R., Singh, N. S., Schiratti, P. R., Semwanga, A., Binyaruka, P., Sachingongu, N., ... & Blanchet, K. (2019). Mathematical modelling for health systems research: a systematic review of system dynamics and agent-based models. BMC Health Services Research, 19, 1-24. https://doi.org/10.1186/s12913-019-4627-7
Chang, S. C., Lu, M. T., Pan, T. H., & Chen, C. S. (2021). Evaluating the E-health cloud computing systems adoption in Taiwan’s healthcare industry. Life11(4), 310. https://doi.org/10.3390/life11040310.
Cresswell, K., Domínguez Hernández, A., Williams, R., & Sheikh, A. (2022). Key challenges and opportunities for cloud technology in health care: Semistructured interview study. JMIR Human Factors9(1), e31246. doi:10.2196/31246.
Damtew, A. W., Borena, T., & Yilma, Y. (2021). The roles of cloud-based supply chain integration on firm performances and competitiveness. International Journal of Industrial and Manufacturing Systems Engineering, 6(3), 49-58. doi: 10.11648/j.ijimse.20210603.12.
Ding, Z., Gong, W., Li, S., & Wu, Z. (2018). System dynamics versus agent-based modeling: A review of complexity simulation in construction waste management. Sustainability, 10(7), 2484. https://doi.org/10.3390/su10072484.
Duan, Q., & Liao, T. W. (2014). Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics153, 113-129. https://doi.org/10.1016/j.ijpe.2014.02.012.
Duong, L. N. K., Wood, L. C., & Wang, W. Y. C. (2020). Inventory management of perishable health products: a decision framework with non-financial measures. Industrial Management & Data Systems, 120(5), 987-1002. https://doi.org/10.1108/IMDS-11-2019-0594.
Dural Selcuk, G., & Vasilakis, C. (2023). Evaluating the sustainability of complex health system transformation in the context of population ageing: An empirical system dynamics study. Journal of the Operational Research Society, 74(1), 1-17. https://doi.org/10.1080/01605682.2021.1992307.
Eskandari-Khanghahi, M., Tavakkoli-Moghaddam, R., Taleizadeh, A. A., & Amin, S. H. (2018). Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence71, 236-250. https://doi.org/10.1016/j.engappai.2018.03.004.
Eslami, M. H., Jafari, H., Achtenhagen, L., Carlbäck, J., & Wong, A. (2024). Financial performance and supply chain dynamic capabilities: the Moderating Role of Industry 4.0 technologies. International Journal of Production Research, 62(22), 8092-8109. https://doi.org/10.1080/00207543.2021.1966850.
Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2017). Supply chain design for efficient and effective blood supply in disasters. International Journal of Production Economics183, 700-709. https://doi.org/10.1016/j.ijpe.2015.11.007.
Fahmy, S. A., Zaki, A. M., & Gaber, Y. H. (2023). Optimal locations and flow allocations for aggregation hubs in supply chain networks of perishable products. Socio-Economic Planning Sciences, 86, 101500. https://doi.org/10.1016/j.seps.2022.101500.
Farid, M., Purdy, N., & Neumann, W. P. (2020). Using system dynamics modelling to show the effect of nurse workload on nurses’ health and quality of care. Ergonomics, 63(8), 952-964. https://doi.org/10.1080/00140139.2019.1690674.
Ferguson, M., & Ketzenberg, M. E. (2006). Information sharing to improve retail product freshness of perishables. Production and Operations Management15(1), 57-73. https://doi.org/10.1111/j.1937-5956.2006.tb00003.x.
Forrester, J. W. (1958). Industrial dynamics: a major breakthrough for decision makers. Harvard Business Review36(4), 37-66. DOI: 10.1225/58404.
Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669-686. https://doi.org/10.1108/JMTM-10-2019-0368.
Gao, F., & Sunyaev, A. (2019). Context matters: A review of the determinant factors in the decision to adopt cloud computing in healthcare. International Journal of Information Management48, 120-138. https://doi.org/10.1016/j.ijinfomgt.2019.02.002.
German, J. D., Mina, J. K. P., Alfonso, C. M. N., & Yang, K. H. (2018, April). A study on shortage of hospital beds in the Philippines using system dynamics. In 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), IEEE, 72-78. DOI: 10.1109/IEA.2018.8387073.
Gharehbaghian, A., Abolghasemi, H., & Namini, M. T. (2008). Status of blood transfusion services in Iran. Asian Journal of Transfusion Science, 2(1), 13-17. DOI: 10.4103/0973-6247.39505.
Ghasemi, P., Khalili, H. A., Chobar, A. P., Safavi, S., & Hejri, F. M. (2022). A New Multiechelon Mathematical Modeling for Pre‐and Postdisaster Blood Supply Chain: Robust Optimization Approach. Discrete Dynamics in Nature and Society2022(1), 2976929. https://doi.org/10.1155/2022/2976929.
Ghasemzadeh, F., & Pamucar, D. (2023). A local supply chain inventory planning with varying perishability rate product: A case study. Expert Systems with Applications, 215, 119362. https://doi.org/10.1016/j.eswa.2022.119362.
Golestani, M., Moosavirad, S. H., Asadi, Y., & Biglari, S. (2021). A multi-objective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustainable Production and Consumption, 27, 1183-1194. https://doi.org/10.1016/j.spc.2021.02.026.
Habibi-Kouchaksaraei, M., Paydar, M. M., & Asadi-Gangraj, E. (2018). Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Applied Mathematical Modelling, 55, 583-599. https://doi.org/10.1016/j.apm.2017.11.004.
Hald, K. S., & Kinra, A. (2019). How the blockchain enables and constrains supply chain performance. International Journal of Physical Distribution & Logistics Management, 49(4), 376-397. https://doi.org/10.1108/IJPDLM-02-2019-0063.
Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain problem. Computers & Operations Research, 101, 130-143. https://doi.org/10.1016/j.cor.2018.09.001.
Hashemi-Amiri, O., Ghorbani, F., & Ji, R. (2023). Integrated supplier selection, scheduling, and routing problem for perishable product supply chain: A distributionally robust approach. Computers & Industrial Engineering, 175, 108845. https://doi.org/10.1016/j.cie.2022.108845.
Heidari-Fathian, H., & Pasandideh, S. H. R. (2018). Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation. Computers & Industrial Engineering122, 95-105. https://doi.org/10.1016/j.cie.2018.05.051.
Hosseini, S. M. H., Behroozi, F., & Sana, S. S. (2023). Multi-objective optimization model for blood supply chain network design considering cost of shortage and substitution in disaster. RAIRO-Operations Research, 57(1), 59-85. https://doi.org/10.1051/ro/2022206.
Hosseinifard, Z., & Abbasi, B. (2018). The inventory centralization impacts on sustainability of the blood supply chain. Computers & Operations Research, 89, 206-212. https://doi.org/10.1016/j.cor.2016.08.014
Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). Journal of Ambient Intelligence and Humanized Computing, 11, 1085-1104. https://doi.org/10.1007/s12652-019-01315-0.
Idoga, P. E., Toycan, M., Nadiri, H., & Çelebi, E. (2019). Assessing factors militating against the acceptance and successful implementation of a cloud based health center from the healthcare professionals’ perspective: a survey of hospitals in Benue state, northcentral Nigeria. BMC Medical Informatics and Decision Making19, 1-18. https://doi.org/10.1186/s12911-019-0751-x.
Jaigirdar, S. M., Das, S., Chowdhury, A. R., Ahmed, S., & Chakrabortty, R. K. (2023). Multi-objective multi-echelon distribution planning for perishable goods supply chain: A case study. International Journal of Systems Science: Operations & Logistics, 10(1), 2020367. https://doi.org/10.1080/23302674.2021.2020367
Javaid, M., Haleem, A., Singh, R. P., Rab, S., Suman, R., & Khan, I. H. (2022). Evolutionary trends in progressive cloud computing based healthcare: Ideas, enablers, and barriers. International Journal of Cognitive Computing in Engineering3, 124-135. https://doi.org/10.1016/j.ijcce.2022.06.001.
Jelassi, M., Ghazel, C., & Saïdane, L. A. (2017, September). A survey on quality of service in cloud computing. In 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP) (pp. 63-67). IEEE. DOI: 10.1109/ICFSP.2017.8097142
Jhang-Li, J. H., & Chiang, I. R. (2015). Resource allocation and revenue optimization for cloud service providers. Decision Support Systems, 77, 55-66. https://doi.org/10.1016/j.dss.2015.04.008.
Katsaliaki, K., & Brailsford, S. C. (2007). Using simulation to improve the blood supply chain. Journal of The Operational Research Society, 58(2), 219-227. https://doi.org/10.1057/palgrave.jors.2602195.
Kaur, P. D., & Chana, I. (2014). Cloud based intelligent system for delivering health care as a service. Computer Methods and Programs in Biomedicine113(1), 346-359. https://doi.org/10.1016/j.cmpb.2013.09.013.
Kendall, K. E., & Lee, S. M. (1980). Formulating blood rotation policies with multiple objectives. Management Science, 26(11), 1145-1157. https://doi.org/10.1287/mnsc.26.11.1145.
Khalilpourazari, S., Soltanzadeh, S., Weber, G. W., & Roy, S. K. (2020). Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Annals of Operations Research, 289, 123-152. https://doi.org/10.1007/s10479-019-03437-2.
Kim, S., Kim, J., & Kim, D. (2020). Implementation of a blood cold chain system using blockchain technology. Applied Sciences, 10(9), 3330. https://doi.org/10.3390/app10093330.
Krishnan, R., Arshinder, K., & Agarwal, R. (2022). Robust optimization of sustainable food supply chain network considering food waste valorization and supply uncertainty. Computers & Industrial Engineering, 171, 108499. https://doi.org/10.1016/j.cie.2022.108499.
Larimi, N. G., & Yaghoubi, S. (2019). A robust mathematical model for platelet supply chain considering social announcements and blood extraction technologies. Computers & Industrial Engineering137, 106014. https://doi.org/10.1016/j.cie.2019.106014.
Legenvre, H., Henke, M., & Ruile, H. (2020). Making sense of the impact of the internet of things on Purchasing and Supply Management: A tension perspective. Journal of Purchasing and Supply Management, 26(1), 100596. https://doi.org/10.1016/j.pursup.2019.100596.
Lin, A., & Chen, N. C. (2012). Cloud computing as an innovation: Percepetion, attitude, and adoption. International Journal of Information Management32(6), 533-540. https://doi.org/10.1016/j.ijinfomgt.2012.04.001.
Links, J. M., Schwartz, B. S., Lin, S., Kanarek, N., Mitrani-Reiser, J., Sell, T. K., ... & Kendra, J. M. (2018). COPEWELL: a conceptual framework and system dynamics model for predicting community functioning and resilience after disasters. Disaster Medicine and Public Health Preparedness, 12(1), 127-137. https://doi.org/10.1017/dmp.2017.39.
Lu, Q., Chen, J., Song, H., & Zhou, X. (2022). Effects of cloud computing assimilation on supply chain financing risks of SMEs. Journal of Enterprise Information Management, 35(6), 1719-1741. https://doi.org/10.1108/JEIM-11-2020-0461.
Mansur, A., Setiawan, N., Faiz, A. H., & Indrawati, S. (2024). Improving Blood Donations and Lean Blood Bank Services in Indonesian Red Cross: A System Dynamics Approach. Mathematical Modelling of Engineering Problems, 11(9). https://doi.org/10.18280/mmep.110918.
Mansur, A., Vanany, I., & Arvitrida, N. I. (2018). Challenge and opportunity research in blood supply chain management: a literature review. In MATEC Web of Conferences (Vol. 154, p. 01092). EDP Sciences. https://doi.org/10.1051/matecconf/201815401092.
Maresova, P., Sobeslav, V., & Krejcar, O. (2017). Cost–benefit analysis–evaluation model of cloud computing deployment for use in companies. Applied Economics49(6), 521-533. https://doi.org/10.1080/00036846.2016.1200188.
Mashat, R. M., Abourokbah, S. H., & Salam, M. A. (2024). Impact of Internet of Things Adoption on Organizational Performance: A Mediating Analysis of Supply Chain Integration, Performance, and Competitive Advantage. Sustainability, 16(6), 2250. https://doi.org/10.3390/su16062250.
Mohammadi, Z., Barzinpour, F., & Teimoury, E. (2023). A location-inventory model for the sustainable supply chain of perishable products based on pricing and replenishment decisions: A case study. PloS One, 18(7), e0288915. https://doi.org/10.1371/journal.pone.0288915.
Murmu, V., Kumar, D., Sarkar, B., Mor, R. S., & Jha, A. K. (2023). Sustainable inventory management based on environmental policies for the perishable products under first or last in and first out policy. Journal of Industrial and Management Optimization, 19(7), 4764-4803. Doi: 10.3934/jimo.2022149.
Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30(4), 680-708. https://doi.org/10.1287/opre.30.4.680.
Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191-7212. https://doi.org/10.1080/00207543.2015.1005766.
Osorio, A. F., Brailsford, S. C., Smith, H. K., Forero-Matiz, S. P., & Camacho-Rodríguez, B. A. (2017). Simulation-optimization model for production planning in the blood supply chain. Health Care Management Science, 20, 548-564. https://doi.org/10.1007/s10729-016-9370-6.
Paul, T., Mondal, S., Islam, N., & Rakshit, S. (2021). The impact of blockchain technology on the tea supply chain and its sustainable performance. Technological Forecasting and Social Change, 173, 121163. https://doi.org/10.1016/j.techfore.2021.121163.
Püschel, T., Schryen, G., Hristova, D., & Neumann, D. (2015). Revenue management for cloud computing providers: Decision models for service admission control under non-probabilistic uncertainty. European Journal of Operational Research244(2), 637-647. https://doi.org/10.1016/j.ejor.2015.01.027.
Quynh, N. T. T., Son, H. X., Le, T. H., Huy, H. N. D., Vo, K. H., Luong, H. H., ... & Duong-Trung, N. (2021). Toward a design of blood donation management by blockchain technologies. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part VIII 21 (pp. 78-90). Springer International Publishing. https://doi.org/10.1007/978-3-030-87010-2_6.
Ramezanian, R., & Behboodi, Z. (2017). Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transportation Research Part E: Logistics and Transportation Review104, 69-82. https://doi.org/10.1016/j.tre.2017.06.004.
Rashid, A., Rasheed, R., Ngah, A. H., & Amirah, N. A. (2024). Unleashing the power of cloud adoption and artificial intelligence in optimizing resilience and sustainable manufacturing supply chain in the USA. Journal of Manufacturing Technology Management, (ahead-of-print). https://doi.org/10.1108/JMTM-02-2024-0080.
Ratten, V. (2012). Entrepreneurial and ethical adoption behaviour of cloud computing. The Journal of High Technology Management Research23(2), 155-164. https://doi.org/10.1016/j.hitech.2012.06.006.
Rosati, P., Fox, G., Kenny, D., & Lynn, T. (2017, December). Quantifying the financial value of cloud investments: a systematic literature review. In 2017 IEEE international conference on cloud computing technology and science (CloudCom) (pp. 194-201). IEEE. DOI: 10.1109/CloudCom.2017.28.
Sadri, S., Shahzad, A., & Zhang, K. (2021, February). Blockchain traceability in healthcare: Blood donation supply chain. In 2021 23rd International Conference on Advanced Communication Technology (ICACT) (pp. 119-126). IEEE. DOI: 10.23919/ICACT51234.2021.9370704.
Safari, F., Safari, N., Hasanzadeh, A., & Ghatari, A. R. (2015). Factors affecting the adoption of cloud computing in small and medium enterprises. International Journal of Business Information Systems20(1), 116-137. https://doi.org/10.1504/IJBIS.2015.070894.
Sahin, M., Ko, H. S., Lee, H. F., & Azambuja, M. (2017). A simulation case study on supply chain management of a construction firm adopting cloud computing and RFID. International Journal of Industrial and Systems Engineering, 27(2), 233-254. https://doi.org/10.1504/IJISE.2017.086269.
Sallehudin, H., Aman, A. H. M., Razak, R. C., Ismail, M., Bakar, N. A. A., Fadzil, A. F. M., & Baker, R. (2020). Performance and key factors of cloud computing implementation in the public sector. International Journal of Business and Society21(1), 134-152. https://doi.org/10.33736/ijbs.3231.2020.
Savadkoohi, E., Mousazadeh, M., & Torabi, S. A. (2018). A possibilistic location-inventory model for multi-period perishable pharmaceutical supply chain network design. Chemical Engineering Research and Design, 138, 490-505. https://doi.org/10.1016/j.cherd.2018.09.008.
Shirzad Talatappeh, S., & Lakzi, A. (2020). Developing a model for investigating the impact of cloud-based systems on green supply chain management. Journal of Engineering, Design and Technology, 18(4), 741-760. https://doi.org/10.1108/JEDT-06-2019-0161.
Silbermayr, L., & Waitz, M. (2024). Omni-channel inventory management of perishable products under transshipment and substitution. International Journal of Production Economics, 267, 109089. https://doi.org/10.1016/j.ijpe.2023.109089.
Stranieri, S., Riccardi, F., Meuwissen, M. P., & Soregaroli, C. (2021). Exploring the impact of blockchain on the performance of agri-food supply chains. Food Control, 119, 107495. https://doi.org/10.1016/j.foodcont.2020.107495.
Sy, C., Bernardo, E., Miguel, A., San Juan, J. L., Mayol, A. P., Ching, P. M., ... & Mutuc, J. E. (2020). Policy development for pandemic response using system dynamics: a case study on COVID-19. Process Integration and Optimization for Sustainability, 4, 497-501. https://doi.org/10.1007/s41660-020-00130-x.
Tirkolaee, E. B., Golpîra, H., Javanmardan, A., & Maihami, R. (2023). A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study. Socio-Economic Planning Sciences85, 101439. https://doi.org/10.1016/j.seps.2022.101439.
Tirkolaee, E. B., Hadian, S., Weber, G. W., & Mahdavi, I. (2020). A robust green traffic‐based routing problem for perishable products distribution. Computational Intelligence, 36(1), 80-101. https://doi.org/10.1111/coin.12240.
Vanany, I., Maryani, A., Amaliah, B., Rinaldy, F., & Muhammad, F. (2015). Blood traceability system for Indonesian blood supply chain. Procedia Manufacturing4, 535-542. https://doi.org/10.1016/j.promfg.2015.11.073.
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Wamba, S. F., Queiroz, M. M., & Trinchera, L. (2020). Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. International Journal of Production Economics, 229, 107791. https://doi.org/10.1016/j.ijpe.2020.107791.
Yavari, M., & Geraeli, M. (2019). Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods. Journal of Cleaner Production, 226, 282-305. https://doi.org/10.1016/j.jclepro.2019.03.279.
Yavari, M., & Zaker, H. (2019). An integrated two-layer network model for designing a resilient green-closed loop supply chain of perishable products under disruption. Journal of Cleaner Production, 230, 198-218. https://doi.org/10.1016/j.jclepro.2019.04.130.
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222. doi: 10.22091/jemsc.2025.11853.1230
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7. doi: 10.22091/stim.2023.8708.1877
Zahiri, B., & Pishvaee, M. S. (2017). Blood supply chain network design considering blood group compatibility under uncertainty. International Journal of Production Research55(7), 2013-2033. https://doi.org/10.1080/00207543.2016.1262563.
Zhang, J., & Li, Y. (2023). Collaborative vehicle-drone distribution network optimization for perishable products in the epidemic situation. Computers & Operations Research, 149, 106039. https://doi.org/10.1016/j.cor.2022.106039.
CAPTCHA Image