Andian Technologies, www.andian.com. 2014.
Antognoli, M., Marinacci, C., Ricci, S., & Rizzetto, L. (2020). Requirement specifications for track measuring and monitoring systems. Ingegneria Ferroviaria, 2020, 841–864.
Bababeik, M., Behnia, K., & Khademi, N. (2024). Increasing the Resilience of Rail Network through the Optimal Location of Relief Trains. Journal of Transportation Research, 21(2), 217–232. https://www.trijournal.ir/article_96254.html
Bahrekazemi, M. (2004). Train-Induced Ground Vibration and Its Prediction.
Bokhman, E. D., Boronachin, A. M., Filatov, Yu. V, Larionov, D. Yu., Podgornaya, L. N., Shalymov, R. V, & Zuzev, G. N. (2014). Optical-inertial system for railway track diagnostics. 2014 DGON Inertial Sensors and Systems (ISS), 1–17. https://doi.org/10.1109/InertialSensors.2014.7049477
Heirich, O., Lehner, A., Robertson, P., & Strang, T. (2011). Measurement and analysis of train motion and railway track characteristics with inertial sensors. 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 1995–2000. https://doi.org/10.1109/ITSC.2011.6082908
Islamic Republic of Iran Railways website.
Kaito, K., Ishii, H., Fujino, Y., & Mizuno, Y. (2006). The Study of Train Intelligent Monitoring System Using Acceleration of Ordinary Train. https://api.semanticscholar.org/CorpusID:54676958
Kratochwille, R. (2019, آگوست). ICE-S Vehicle reaction measurement and track geometry measurement on the same measuring train Results of the comparison of the two different track inspection methods.
Lee, J. S., Choi, S., Kim, S. S., Kim, Y. G., Kim, S. W., & Park, C. (2011). Track condition monitoring by in-service trains: A comparison between axle-box and bogie accelerometers. IET Conference Publications, 2011(581 CP).
https://doi.org/10.1049/cp.2011.0586
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222. doi: 10.22091/jemsc.2025.11853.1230
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7. doi: 10.22091/stim.2023.8708.1877
McAnaw, H. E. (2003). The system that measures the system. NDT & E International, 36(3), 169–179. https://doi.org/https://doi.org/10.1016/S0963-8695(02)00055-5
Molodova, M., Li, Z., Nunez, A., & Dollevoet, R. (2014). Automatic detection of squats in railway infrastructure. IEEE Transactions on Intelligent Transportation Systems, 15(5), 1980–1990. https://doi.org/10.1109/TITS.2014.2307955
MORI, H., TSUNASHIMA, H., KOJIMA, T., MATSUMOTO, A., & MIZUMA, T. (2010). Condition Monitoring of Railway Track Using In-service Vehicle. Journal of Mechanical Systems for Transportation and Logistics, 3(1), 154–165. https://doi.org/10.1299/jmtl.3.154
Rossi, F., & Nicolini, A. (2003). A simple model to predict train-induced vibration: theoretical formulation and experimental validation. Environmental Impact Assessment Review, 23(3), 305–322. https://doi.org/https://doi.org/10.1016/S0195-9255(03)00005-2
Weston, P. F., Ling, C. S., Roberts, C., Goodman, C. J., Li, P., & Goodall, R. M. (2007). Monitoring vertical track irregularity from in-service railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(1), 75–88. https://doi.org/10.1243/0954409JRRT65
Tsunashima, H., Honda, R., & Matsumoto, A. (2023). Track Condition Monitoring Based on In-Service Train Vibration Data Using Smartphones. In Railway Infrastructure Maintenance (pp. 1–20). IntechOpen.
https://doi.org/10.5772/intechopen.108123
Mohammadzadeh, S., Heydari, H., Karimi, M., & Mosleh, A. (2024). Correlation Analysis of Railway Track Alignment and Ballast Stiffness: Comparing Frequency-Based and Machine Learning Algorithms. Journal of Rail Transport Planning & Management, 11(1), 23–45.
https://doi.org/10.1016/j.jrtpm.2023.100234
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Meng, Q., Lu, P., & Zhu, S. (2023). A Smartphone-Enabled IoT System for Vibration and Noise Monitoring of Rail Transit. IEEE Internet of Things Journal, 9(7), 5678–5687. https://doi.org/10.1109/JIOT.2022.3233051
ارسال نظر در مورد این مقاله