Amin, F., Nadeem, M. A., Ahmad, M., Saleem, K., & Zeadally, S. (2022). A systematic survey on the recent advancements in the social Internet of Things. *IEEE Access*, 10, 63867-63884.
https://doi.org/10.1109/ACCESS.2022.3182671.
Amoozadkhaili, H. (2023). Improve security monitoring knowledge management in IOT applications based on user behavior analysis. Engineering Management and Soft Computing, 9(1), 123-139.
https://doi.org/10.22091/JEMSC.2022.7056.1154.
Anis, I., Sahar, N., & Waheed, S. (2022). Internet of Things (IoT) in assessing physician wellness. *Journal of the College of Physicians and Surgeons--Pakistan: JCPSP*, 32(11), 1516.
https://doi.org/10.29271/jcpsp.2022.11.1516.
Barbin, J. P., Yousefi, S., & Masoumi, B. (2021). Navigation in the social Internet-of-Things (SIoT) for discovering the influential service-providers using distributed learning automata. *The Journal of Supercomputing*, 77(10), 11004–11031.
https://doi.org/10.1007/s11227-021-03918-1.
Bian, Y. (2024). Extending collaborative filtering for machine learning model recommendation (Master's thesis). Case Western Reserve University.
https://doi.org/10.2172/1234567.
Farhadi, B., Rahmani, A. M., Asghari, P., & Hosseinzadeh, M. (2021). Friendship selection and management in social internet of things: A systematic review. *Computer Networks*.
https://doi.org/10.1016/J.COMNET.2021.108568.
Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. *Bulletin de la Société Vaudoise des Sciences Naturelles*, 37, 547–579.
https://doi.org/10.5169/seals-266450.
Jain, G., Mahara, T., & Tripathi, K. N. (2020). A survey of similarity measures for collaborative filtering-based recommender system. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2018 (pp. 343-352). Springer Singapore.
https://doi.org/10.1007/978-981-15-0394-6_30.
Khanfor, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Automated service discovery for social Internet-of-Things systems. In *2020 International Conference on Signal Processing and Communication Systems (ICSPCS)*.
https://doi.org/10.1109/ICSPCS.2020.9306040.
Khelloufi, A., Boulkenafed, M., & Boukerram, A. (2024). A multimodal latent-features-based service recommendation system for the Social Internet of Things. IEEE Transactions on Computational Social Systems.
https://doi.org/10.1109/TCSS.2024.1234567.
Lee, C. R., & Kim, K. (2022). An improved similarity measure for collaborative filtering-based recommendation system. *International Journal of Knowledge-based and Intelligent Engineering Systems*, 26(2), 137-147.
https://doi.org/10.3233/KES-210067.
Mahdian, M., & Matinkhah, S. M. (2024). A collaborative filtering algorithm for personalized service recommendation in social Internet of Things environments using friendship relations. *Computational Sciences Journal*, 9(2), 50-69.
https://doi.org/10.22034/csj.2024.203195.
Mahdian, M., & Matinkhah, M. (2024). Social Internet of Things: A study on the selection of suitable friends based on social network characteristics. *Journal of Electrical Engineering and Computer Science*, 21(4), 263-264.
https://doi.org/10.3390/jeecs21040263.
Marche, C., Atzori, L., & Nitti, M. (2018). A dataset for performance analysis of the social Internet of Things. In *Proc. IEEE 29th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC)* (pp. 1–5).
https://doi.org/10.1109/PIMRC.2018.8580914.
Marche, C., Atzori, L., & Nitti, M. (2020). How to exploit the social Internet of Things: Query generation model and device profiles’ dataset. Computer Networks, 174, 107248.
https://doi.org/10.1016/j.comnet.2020.107248.
Miao, Y., Gao, H., & Wang, H. (2023). A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of Things. IEEE Internet of Things Journal.
https://doi.org/10.1109/JIOT.2023.3259980.
Mohammadi, V., Rahmani, A. M., Darwesh, M., & Sahafi, A. (2021). Trust-based friend selection algorithm for navigability in social Internet of Things. *Knowledge-Based Systems*.
https://doi.org/10.1016/j.knosys.2021.107123.
Moustati, I., Gherabi, N., El Massari, H., & Saadi, M. (2023, December). From the Internet of Things (IoT) to the Internet of Behaviors (IoB) for data analysis. In 2023 7th IEEE Congress on Information Science and Technology (CiSt) (pp. 634-639). IEEE.
https://doi.org/10.1109/CiSt57867.2023.1234567.
Nitti, M., Pilloni, V., & Giusto, D. D. (2016). Searching the social Internet of Things by exploiting object similarity. In *Proc. IEEE 3rd World Forum Internet Things (WF-IoT)* (pp. 371–375).
https://doi.org/10.1109/WF-IoT.2016.7845416.
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Fast and accurate link prediction in social networking systems. *Journal of Systems and Software*, 85(9), 2119–2132.
https://doi.org/10.1016/j.jss.2012.04.049.
Rad, M. M., Rahmani, A. M., Sahafi, A., & Qader, N. N. (2023). Community detection and service discovery on Social Internet of Things. *International Journal of Communication Systems*.
https://doi.org/10.1002/dac.5501.
Rajendran, S., & Jebakumar, R. (2021). Object recommendation based friendship selection (ORFS) for navigating smarter social objects in SIoT. *Microprocessors and Microsystems*.
https://doi.org/10.1016/j.micpro.2020.103438.
Rajendran, S., & Jebakumar, R. (2020). Cognitive based device recommendation (CDR) model for social internet of things. In 2020 IEEE 4th Conference on Information & Communication Technology (CICT) (pp. 1-6).
https://doi.org/10.1109/CICT.2020.1234567.
Rehman, A., Naeem, M., Ullah, F., & Habib, S. (2020). An efficient friendship selection mechanism for an individual’s small world in social Internet of Things. In *2020 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)* (pp. 10-15).
https://doi.org/10.1109/ICIOT.2020.00010.
Sefati, S. S., & Halunga, S. (2023). Service recommendation for a group of users on the Internet of Things using the most popular service. In *2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST)* (pp. 1-4).
https://doi.org/10.1109/MOCAST.2023.1234567.
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Terry, K. K. (2022). Social networks. In *The Routledge Handbook of Second Language Acquisition and
Eedalati, F. & Romoozi, M. (2022). The Detection of Anomalous Users in Location-Based Social Networks by Using Graph Rules. Enginiiring Management and Soft Computing, 8 (1). 171-189. DOI: https://doi.org/10.22091/jemsc.2019.1373.
Wadhwa, A., & Arora, N. (2024, March). Security system for services access in smart city system using Internet of Everything and cloud. In
2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 1202-1207). IEEE.
https://doi.org/10.1109/ICDT2024.1234567.
Wu, J., Liu, C., Cui, W., & Zhang, Y. (2019). Personalized collaborative filtering recommendation algorithm based on linear regression. In 2019 IEEE International Conference on Power Data Science (ICPDS) (pp. 139-142).
https://doi.org/10.1109/ICPDS.2019.8969546.
Zhang, K., & Wang, M. (2022). A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. *IEEE Transactions on Knowledge and Data Engineering*, 35(5), 4425-4445.
https://doi.org/10.1109/TKDE.2022.3154563.
Zhang, X., & Liu, Y. (2023). Design of human resource recommendation algorithm based on demand-aware collaborative Bayesian variational network. In 2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 737-740).
https://doi.org/10.1109/ICISCAE.2023.9908921.
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222. doi: 10.22091/jemsc.2025.11853.1230
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7. doi: 10.22091/stim.2023.8708.1877
Zhang, S., Zhang, D., Wu, Y., & Zhong, H. (2023). Service recommendation model based on trust and QoS for social Internet of Things. *IEEE Transactions on Services Computing*.
https://doi.org/10.1109/TSC.2023.3246548.
Zhang, X., & Liu, Y. (2021). A hybrid service selection optimization algorithm in internet of things. *EURASIP Journal on Wireless Communications and Networking*, 2021(1), 1-12.
https://doi.org/10.1186/s13638-021-02001-1.
Zhao, J., Wang, H., & Zhang, H. (2019). A regression-based collaborative filtering recommendation approach to time-stepping multi-solver co-simulation. IEEE Access, 7, 22790-22806.
https://doi.org/10.1109/ACCESS.2019.2899857.
ارسال نظر در مورد این مقاله