بهبود پیشنهادهای سرویس در اینترنت اشیاء اجتماعی: یک رویکرد پالایش همخوان تطبیقی با استفاده از شباهت مبتنی بر دوستی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی کامپیوتر- نرم افزار و الگوریتم ، دانشگاه یزد، یزد، ایران

2 استادیار، دانشکده مهندسی، دانشگاه یزد، یزد، ایران

10.22091/jemsc.2025.11431.1210

چکیده

اینترنت اشیاء اجتماعی (SIoT) با ترکیب تعاملات اجتماعی و فناوری اینترنت اشیاء، محیط‌های هوشمند و یکپارچه‌ای ایجاد می‌کند که در آن، اشخاص از سرویس‌های ارائه‌شده توسط اشیاء تحت مالکیت دیگران بهره‌مند می‌شوند. در این شبکه، افراد با ایجاد روابط دوستی می‌توانند از خدماتی استفاده کنند که شخصی‌سازی‌شده و متناسب با علایق آن‌ها باشد. با افزایش مقیاس شبکه و تعداد اشخاص، اهمیت ارائه سرویس‌های متناسب بیشتر می‌شود. این مقاله به تحلیل مجموعه داده‌های واقعی شهر سانتاندر از نظر تعداد اشخاص، توزیع دوستی‌ها و نوع توزیع آن‌ها پرداخته و یک الگوریتم پالایشگر همخوان تطبیقی مبتنی بر جوامع دوستی (A-CFA-FC) را معرفی می‌کند که با در نظر گرفتن روابط دوستی و ترجیحات، جوامع دوستی را تشخیص داده و سرویس‌های متناسب پیشنهاد می‌دهد. نتایج اجرای الگوریتم روی داده‌های شهر سانتاندر نشان می‌دهد که این الگوریتم با شاخص شباهت جاکارد و پیچیدگی زمانی کمتر، تعداد بیشتری جوامع دوستی را تشخیص می‌دهد و در مقایسه با الگوریتم‌های پایه، میانگین مربعات ریشه خطا را حدود 17 درصد و امتیاز F1 را حدود 21 درصد بهبود می‌بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Enhancing Service Recommendations in the Social Internet of Things: An Adaptive Collaborative Filtering Approach Using Friendship-Based Similarity

نویسندگان [English]

  • Mohammad Mahdian 1
  • S. Mojtaba Matinkhah 2
1 PhD Student. Department of Computer Engineering, Yazd University, Yazd, Iran.
2 Assistant prof. Department of Computer Engineering, Yazd University, Yazd, Iran
چکیده [English]

The Social Internet of Things (SIoT) integrates social interactions with IoT technology to create intelligent, connected environments. In this network, people form friendships, and objects owned by them provide services to others. As the SIoT network grows, offering personalized services tailored to individual interests becomes increasingly important. This paper examines real-world data from the city of Santander, analyzing the number of users, friendship degree distribution, and its patterns. An adaptive consonance filter algorithm based on friendship communities (A-CFA-FC) is proposed, which uses friendship relations and individual preferences to identify friendship communities based on a similarity index. The algorithm ranks and recommends services according to user interests within the SIoT environment. Results from the Santander dataset show that the proposed algorithm, using the Jaccard similarity index, detects more communities with lower time complexity and higher compactness. Compared to the baseline algorithm, it reduces root mean square error by about 17% and improves the F1 score by approximately 21%.

کلیدواژه‌ها [English]

  • Adaptive Filtering Algorithm
  • User Preference Matching
  • Community Detection
  • Service Personalization
Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. *Social Networks*, 25(3), 211–230. https://doi.org/10.1016/S0378-8733(03)00009-1.
Amin, F., Nadeem, M. A., Ahmad, M., Saleem, K., & Zeadally, S. (2022). A systematic survey on the recent advancements in the social Internet of Things. *IEEE Access*, 10, 63867-63884. https://doi.org/10.1109/ACCESS.2022.3182671.
Amin, F., & Hwang, S. O. (2022). Automated service search model for the social Internet of Things. *CMC-Computers, Materials & Continua*. https://doi.org/10.32604/cmc.2022.028342.
Amoozadkhaili, H. (2023). Improve security monitoring knowledge management in IOT applications based on user behavior analysis. Engineering Management and Soft Computing, 9(1), 123-139. https://doi.org/10.22091/JEMSC.2022.7056.1154.
Anis, I., Sahar, N., & Waheed, S. (2022). Internet of Things (IoT) in assessing physician wellness. *Journal of the College of Physicians and Surgeons--Pakistan: JCPSP*, 32(11), 1516. https://doi.org/10.29271/jcpsp.2022.11.1516.
Barbin, J. P., Yousefi, S., & Masoumi, B. (2021). Navigation in the social Internet-of-Things (SIoT) for discovering the influential service-providers using distributed learning automata. *The Journal of Supercomputing*, 77(10), 11004–11031. https://doi.org/10.1007/s11227-021-03918-1.
Bian, Y. (2024). Extending collaborative filtering for machine learning model recommendation (Master's thesis). Case Western Reserve University. https://doi.org/10.2172/1234567.
Farhadi, B., Rahmani, A. M., Asghari, P., & Hosseinzadeh, M. (2021). Friendship selection and management in social internet of things: A systematic review. *Computer Networks*. https://doi.org/10.1016/J.COMNET.2021.108568.
Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. *Bulletin de la Société Vaudoise des Sciences Naturelles*, 37, 547–579. https://doi.org/10.5169/seals-266450.
Jain, G., Mahara, T., & Tripathi, K. N. (2020). A survey of similarity measures for collaborative filtering-based recommender system. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2018 (pp. 343-352). Springer Singapore. https://doi.org/10.1007/978-981-15-0394-6_30.
Khanfor, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Automated service discovery for social Internet-of-Things systems. In *2020 International Conference on Signal Processing and Communication Systems (ICSPCS)*. https://doi.org/10.1109/ICSPCS.2020.9306040.
Khelloufi, A., Boulkenafed, M., & Boukerram, A. (2024). A multimodal latent-features-based service recommendation system for the Social Internet of Things. IEEE Transactions on Computational Social Systems. https://doi.org/10.1109/TCSS.2024.1234567.
Khojamli, H., & Razmara, J. (2021). Survey of similarity functions on neighborhood-based collaborative filtering. *Expert Systems with Applications*, 185, 115482. https://doi.org/10.1016/j.eswa.2021.115482.
Komar, A. (2022). A heuristic model for friend selection in Social Internet of Things. *Entropy*, 24(2), 243. https://doi.org/10.3390/e24020243.
Lee, C. R., & Kim, K. (2022). An improved similarity measure for collaborative filtering-based recommendation system. *International Journal of Knowledge-based and Intelligent Engineering Systems*, 26(2), 137-147. https://doi.org/10.3233/KES-210067.
Liu, S., Ma, Y., & Chen, X. (2023). Evolutionary game model based on cumulative prospect theory for information management mechanism in SIoT. *Heliyon*, 9(6). https://doi.org/10.1016/j.heliyon.2023.e15794.
Mahdian, M., & Matinkhah, S. M. (2024). A collaborative filtering algorithm for personalized service recommendation in social Internet of Things environments using friendship relations. *Computational Sciences Journal*, 9(2), 50-69. https://doi.org/10.22034/csj.2024.203195.
Mahdian, M., & Matinkhah, M. (2024). Social Internet of Things: A study on the selection of suitable friends based on social network characteristics. *Journal of Electrical Engineering and Computer Science*, 21(4), 263-264. https://doi.org/10.3390/jeecs21040263.
Marche, C., Atzori, L., & Nitti, M. (2018). A dataset for performance analysis of the social Internet of Things. In *Proc. IEEE 29th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC)* (pp. 1–5). https://doi.org/10.1109/PIMRC.2018.8580914.
Marche, C., Atzori, L., & Nitti, M. (2020). How to exploit the social Internet of Things: Query generation model and device profiles’ dataset. Computer Networks, 174, 107248. https://doi.org/10.1016/j.comnet.2020.107248.
Miao, Y., Gao, H., & Wang, H. (2023). A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial internet of Things. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2023.3259980.
Mohammadi, V., Rahmani, A. M., Darwesh, M., & Sahafi, A. (2021). Trust-based friend selection algorithm for navigability in social Internet of Things. *Knowledge-Based Systems*. https://doi.org/10.1016/j.knosys.2021.107123.
Molae Fard, R. (2022). Developing a recommender system for the health tourism industry using data mining methods. Engineering Management and Soft Computing, 8(2), 125-142. https://doi.org/10.22091/jemsc.2020.5564.1134.
Moustati, I., Gherabi, N., El Massari, H., & Saadi, M. (2023, December). From the Internet of Things (IoT) to the Internet of Behaviors (IoB) for data analysis. In 2023 7th IEEE Congress on Information Science and Technology (CiSt) (pp. 634-639). IEEE. https://doi.org/10.1109/CiSt57867.2023.1234567.
Nitti, M., Pilloni, V., & Giusto, D. D. (2016). Searching the social Internet of Things by exploiting object similarity. In *Proc. IEEE 3rd World Forum Internet Things (WF-IoT)* (pp. 371–375). https://doi.org/10.1109/WF-IoT.2016.7845416.
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Fast and accurate link prediction in social networking systems. *Journal of Systems and Software*, 85(9), 2119–2132. https://doi.org/10.1016/j.jss.2012.04.049.
Rad, M. M., Rahmani, A. M., Sahafi, A., & Qader, N. N. (2023). Community detection and service discovery on Social Internet of Things. *International Journal of Communication Systems*. https://doi.org/10.1002/dac.5501.
Rajendran, S., & Jebakumar, R. (2021). Object recommendation based friendship selection (ORFS) for navigating smarter social objects in SIoT. *Microprocessors and Microsystems*. https://doi.org/10.1016/j.micpro.2020.103438.
Rajendran, S., & Jebakumar, R. (2020). Cognitive based device recommendation (CDR) model for social internet of things. In 2020 IEEE 4th Conference on Information & Communication Technology (CICT) (pp. 1-6). https://doi.org/10.1109/CICT.2020.1234567.
Rehman, A., Naeem, M., Ullah, F., & Habib, S. (2020). An efficient friendship selection mechanism for an individual’s small world in social Internet of Things. In *2020 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)* (pp. 10-15). https://doi.org/10.1109/ICIOT.2020.00010.
Sefati, S. S., & Halunga, S. (2023). Service recommendation for a group of users on the Internet of Things using the most popular service. In *2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST)* (pp. 1-4). https://doi.org/10.1109/MOCAST.2023.1234567.
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Terry, K. K. (2022). Social networks. In *The Routledge Handbook of Second Language Acquisition and
Eedalati, F. & Romoozi, M. (2022). The Detection of Anomalous Users in Location-Based Social Networks by Using Graph Rules. Enginiiring Management and Soft Computing, 8 (1). 171-189. DOI: https://doi.org/10.22091/jemsc.2019.1373.
 
Wadhwa, A., & Arora, N. (2024, March). Security system for services access in smart city system using Internet of Everything and cloud. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 1202-1207). IEEE. https://doi.org/10.1109/ICDT2024.1234567.
Wu, J., Liu, C., Cui, W., & Zhang, Y. (2019). Personalized collaborative filtering recommendation algorithm based on linear regression. In 2019 IEEE International Conference on Power Data Science (ICPDS) (pp. 139-142). https://doi.org/10.1109/ICPDS.2019.8969546.
Zhang, K., & Wang, M. (2022). A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. *IEEE Transactions on Knowledge and Data Engineering*, 35(5), 4425-4445. https://doi.org/10.1109/TKDE.2022.3154563.
Zhang, X., & Liu, Y. (2023). Design of human resource recommendation algorithm based on demand-aware collaborative Bayesian variational network. In 2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 737-740). https://doi.org/10.1109/ICISCAE.2023.9908921.
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222. doi: 10.22091/jemsc.2025.11853.1230
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7. doi: 10.22091/stim.2023.8708.1877
Zhang, S., Zhang, D., Wu, Y., & Zhong, H. (2023). Service recommendation model based on trust and QoS for social Internet of Things. *IEEE Transactions on Services Computing*. https://doi.org/10.1109/TSC.2023.3246548.
Zhang, X., & Liu, Y. (2021). A hybrid service selection optimization algorithm in internet of things. *EURASIP Journal on Wireless Communications and Networking*, 2021(1), 1-12. https://doi.org/10.1186/s13638-021-02001-1.
Zhao, J., Wang, H., & Zhang, H. (2019). A regression-based collaborative filtering recommendation approach to time-stepping multi-solver co-simulation. IEEE Access, 7, 22790-22806. https://doi.org/10.1109/ACCESS.2019.2899857.
CAPTCHA Image