Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
https://doi.org/10.48550/arXiv.1803.01271
Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert systems with applications, 140, 112896.
https://doi.org/10.1016/j.eswa.2019.112896
Bandara, K., Hewamalage, H., Liu, Y. H., Kang, Y., & Bergmeir, C. (2021). Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognition, 120, 108148.
https://doi.org/10.1016/j.patcog.2021.108148
Bandara, K. (2023). Forecasting with Big Data Using Global Forecasting Models. In Forecasting with Artificial Intelligence: Theory and Applications (pp. 107-122). M. Hamoudia, S. Makridakis, and E. Spiliotis, Editors. 2023, Cham: Springer Nature Switzerland:
https://doi.org/10.1007/978-3-031-35879-1
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. J. off. Stat, 6(1), 3-73.
Godahewa, R., Bandara, K., Webb, G. I., Smyl, S., & Bergmeir, C. (2021). Ensembles of localised models for time series forecasting. Knowledge-Based Systems, 233, 107518.
https://doi.org/10.1016/j.knosys.2021.107518
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388-427.
https://doi.org/10.1016/j.ijforecast.2020.06.008
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of forecasting, 18(3), 439-454.
https://doi.org/10.1016/S0169-2070(01)00110-8
Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.
https://doi.org/10.1007/978-3-540-71918-2
Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., & O’Hara-Wild, M. (2019). tsfeatures: Time series feature extraction. R package version, 1(0).
Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1), 167-177.
https://doi.org/10.1016/j.ijforecast.2019.05.008
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017, August). Time-series extreme event forecasting with neural networks at uber. In International conference on machine learning (Vol. 34, pp. 1-5). sn.
Martínez, F., Frías, M. P., Pérez-Godoy, M. D., & Rivera, A. J. (2018). Dealing with seasonality by narrowing the training set in time series forecasting with kNN. Expert systems with applications, 103, 38-48.
https://doi.org/10.1016/j.eswa.2018.03.005
Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2019). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437.
https://doi.org/10.48550/arXiv.1905.10437
Parmezan, A. R. S., Souza, V. M., & Batista, G. E. (2019). Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Information sciences, 484, 302-337.
https://doi.org/10.1016/j.ins.2019.01.076
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31.
https://doi.org/10.48550/arXiv.1706.09516
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
International journal of forecasting,
36(3), 1181-1191.
https://doi.org/10.1016/j.ijforecast.2019.07.001
Schubert, E., & Rousseeuw, P. J. (2021). Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Information Systems, 101, 101804.
https://doi.org/10.1016/j.is.2021.101804
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7.
Smyl, S., & Kuber, K. (2016, June). Data preprocessing and augmentation for multiple short time series forecasting with recurrent neural networks. In 36th international symposium on forecasting.
Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I. Polosukhin (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, Curran Associates Inc.: 6000–6010.
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
ارسال نظر در مورد این مقاله