تأثیر رویکرد مبتنی بر بلاک‌چین بر قراردادهای هوشمند در توسعه تجارت الکترونیک با استفاده از داده‌کاوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی فناوری اطلاعات، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ا یران.

2 استادیار، گروه مهندسی فناوری اطلاعات، واحد تهران جنوب، دانشگاهآزادا سلامی، تهران، ایران

10.22091/jemsc.2025.11967.1238

چکیده

قرارداد هوشمند یک پروتکل کامپیوتری برای ایجاد یا بهبود قرارداد است. قرارداد هوشمند امکان ایجاد تراکنش‌های معتبر بدون نیاز به واسط را فراهم می‌کند. با ظهور فناوری بلاک چین ایده قراردادهای هوشمند، بیشتر مورد توجه قرار گرفت وکاربردهای متنوعی پیدا کرد. حریم خصوصی، دارایی دیجیتال و رمزنگاری داده ها سه عامل مهم بهره مندی از قراردادهای هوشمند مبتنی بر بلاکچین هستند. مقاله حاضر، به بررسی تأثیر رویکرد مبتنی بر بلاک‌چین بر قراردادهای هوشمند در توسعه تجارت الکترونیک با استفاده از داده‌کاوی پرداخت. روش تحقیق به‌صورت توصیفی با رویکرد داده‌کاوی و محاسبات رگرسیونی، درخت تصمیم‌گیری و شبکه عصبی است. هدف اصلی این تحقیق تعیین اثرگذاری بلاک‌چین بر قراردادهای هوشمند در توسعه تجارت الکترونیک با استفاده از داده‌کاوی است. قدرت پیش‌بینی کننده قراردادهای هوشمند بر اساس بلاک‌چین 55 درصد است که سطح بالاتر از 0.5 را نشان می‌دهد. بنابراین می‌توان گفت که مدل پیشنهادی قدرت پیش‌بینی‌کنندگی مناسبی برای بررسی قراردادهای هوشمند دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of the Blockchain-Based Approach On Smart Contracts in the Development of E-Commerce Using Data Mining

نویسندگان [English]

  • Mohammad Reza Maranaki 1
  • Mahmood Deypir 2
1 Master of Science in Information Technology, Faculty of Technology and Engineering, South Tehran Branch, Islamic Azad University University, Tehran, Iran
2 Faculty of computer engineering, shahid sattari Aeronautical University of science and technology.
چکیده [English]

A smart contract is a computer protocol for creating or improving a contract. A smart contract allows for the creation of valid transactions without the need for an intermediary. With the advent of blockchain technology, the idea of smart contracts has received more attention and has found a wide range of applications. Privacy, digital assets, and data encryption are three important factors in the benefit of blockchain-based smart contracts. This article examines the impact of a blockchain-based approach on smart contracts in the development of e-commerce using data mining. The research method is descriptive with a data mining approach and regression computation, decision trees, and neural networks. The main objective of this research is to determine the impact of blockchain on smart contracts in the development of e-commerce using data mining. The predictive power of smart contracts based on blockchain is 55%, which shows a level higher than 0.5. Therefore it can be said that the proposed model has appropriate predictive power for examining smart contracts.

کلیدواژه‌ها [English]

  • Privacy
  • Digital asset
  • Blockchain
  • Smart contract
  • E-commerce development
Abdolvand, N., Albadvi, A., & Ferdowsi, Z. (2008). Assessing readiness for business process reengineering. Business Process Management Journal, 14(4), 497–511. doi: https://doi.org/10.1108/14637150810888046
Afshani, J., Karimi, A., Osati Eraghi, N., & Zarafshan, F. (2022). A Fuzzy DEMATEL-ANP-Based Approach to Prioritize Activities in Enterprise Architecture. Complexity2022, 2158255:1-2158255:12. https://doi.org/10.1155/2022/2158255
Ahadi, H. R. (2004). An examination of the role of organizational enablers in business process reengineering and the impact of information technology. Information Resources Management Journal (IRMJ), 17(4), 1–19. doi: 10.4018/irmj.2004100101
Ahmad, H., Francis, A., & Zairi, M. (2007). Business process reengineering: critical success factors in higher education. Business Process Management Journal, 13(3), 451–469. doi: https://doi.org/10.1108/14637150710752344
Al‐Mashari, M., Irani, Z., & Zairi, M. (2001). Business process reengineering: a survey of international experience. Business Process Management Journal, 7(5), 437–455. doi: https://doi.org/10.1108/14637150110406812
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Al‐Mashari, M., & Zairi, M. (2000). Revisiting BPR: a holistic review of practice and development. Business Process Management Journal, 6(1), 10–42. doi: https://doi.org/10.1108/14637150010283045
Amani, J., & Akbari, H. (2024). The Impact of Innovation Trend on Employee Performance in Production of New Products (Case Study: Saipa Company Employees). Engineering Management and Soft Computing9(2), 1-18. 10.22091/jemsc.2024.7419.1161
Bajpai, A., Misra, S. C., & Kim, D.-Y. (2023). Identification and assessment of risks related to digitalization in Indian construction: a quantitative approach. Business Process Management Journal29(4), 965–990. https://doi.org/10.1108/bpmj-11-2022-0571
Çelikbilek, Y., & Adıgüzel Tüylü, A. N. (2019). Prioritizing the components of e-learning systems by using fuzzy DEMATEL and ANP. Interactive Learning Environments, 1–22. https://doi.org/10.1080/10494820.2019.1655065
Crowe, T. J., Meghan Fong, P., Bauman, T. A., & Zayas‐Castro, J. L. (2002). Quantitative risk level estimation of business process reengineering efforts. Business Process Management Journal, 8(5), 490–511. doi: https://doi.org/10.1108/14637150210449148
Elapatha, V. W., & Jehan, S. N. (2020). An analysis of the implementation of business process re-engineering in public services. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 114.
Fetais, A., Abdella, G. M., Al-Khalifa, K. N., & Hamouda, A. M. (2022). Business process re-engineering: a literature review-based analysis of implementation measures. Information, 13(4), 185.
Gunasekaran, A., & Kobu, B. (2002). Modelling and analysis of business process reengineering. International Journal of Production Research, 40(11), 2521–2546.
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
Hosseini, S. J. (2022). Classification of CRM systems with knowledge creation approach Case of: Internet Service Provider corp. Engineering Management and Soft Computing7(1), 7-24. 10.22091/jemsc.2015.530
Jamali, G., Abbaszadeh, M. A., Ebrahimi, M., & Maleki, T. (2011). Business process reengineering implementation: Developing a causal model of critical success factors. International Journal of E-Education, e-Business, e-Management and e-Learning, 1(5), 354–359.
Khoshlafz, M., & Hekmati, S. (2016). BPR implementation process: an analysis of key success and failure factors. Management Science Letters6(8), 569-574. doi: 10.5267/j.msl.2016.6.004
Kermani, M. A. M., Maghsoudi, M., & Darzi, E. (2024). Enhancing Procurement Performance in Project-Oriented Organizations: A Process Analysis Approach. IEEE Access. doi: 10.1109/ACCESS.2024.3462852
Mavi, R. K., & Standing, C. (2018). Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. Journal of Cleaner Production194, 751–765. https://doi.org/10.1016/J.JCLEPRO.2018.05.120
Maleki, T., & Beikkhakhian, Y. (2011). Business process reengineering implementation: an investigation of critical success factors. INTERNATIONAL CONFERENCE ON INFORMATION AND FINANCE.
Maull, R. S., Tranfield, D. R., & Maull, W. (2003). Factors characterising the maturity of BPR programmes. International Journal of Operations & Production Management, 23(6), 596–624. doi: https://doi.org/10.1108/01443570310476645
Mertens, D., Villegas, S. G., Ware, M. G., Vengrouskie, E. F., & Lloyd, R. (2024). Business process reengineering leadership: princes of Machiavelli. Journal of Management History, 30(1), 41–59. doi: https://doi.org/10.1108/JMH-07-2022-0026
Musonda, I., & Okoro, C. S. (2022). A hermeneutic research on project management approaches applied in a business process re-engineering project. Business Process Management Journal, 28(8), 66–89. doi: https://doi.org/10.1108/BPMJ-11-2021-0694
Paper, D., & Chang, R.-D. (2005). The state of business process reengineering: a search for success factors. Total Quality Management & Business Excellence, 16(1), 121–133. doi: https://doi.org/10.1080/1478336042000309907
Rahseparfard, K., Moradi, M., & Teymoori, S. (2022). Identifying and Ranking the Effective Factors in Improving the Quality of Student Dormitories by Comparing Analytical Network Process (ANP) and DEMATEL Methods. Case Study: Student Dormitories of the University of Qom. Engineering Management and Soft Computing7(2), 221-245. doi: 10.22091/jemsc.2018.2228.1054
Reijers, H. A., & Mansar, S. L. (2005). Best practices in business process redesign: an overview and qualitative evaluation of successful redesign heuristics. Omega, 33(4), 283–306. doi: https://doi.org/10.1016/j.omega.2004.04.012
Ringim, K. J., Razalli, M. R., & Hasnan, N. (2012). Critical success factors for business process management for small and medium banks in Nigeria. Business and Management Review, 2(1), 83–91.
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Salimifard, K., Abbaszadeh, M. A., & Ghorbanpur, A. (2010). Interpretive structural modeling of critical success factors in banking process re-engineering. International Review of Business Research Papers, 6(2), 95–103.
Sung, T. K., & Gibson, D. V. (1998). Critical success factors for business reengineering and corporate performance: the case of Korean corporations. Technological Forecasting and Social Change, 58(3), 297–311. doi: https://doi.org/10.1016/S0040-1625(98)00027-4
Tarokh, M. J., Homayoun, S., & Sadeghein, R. (2008). Survey of Business Process Re-engineering Experiences in Iranian Travel Agencies. International Journal Of Applied Information Systems, 23(5), 2249-0868. doi: http:/ijais12-450480
Turner, J. R. (2010). The handbook of project-based management: leading strategic change in organizations. In (No Title). McGraw-Hill Professional.
Wang, C.-N., Vo, T. T. B. C., Hsu, H.-P., Chung, Y.-C., Nguyen, N. T., & Nhieu, N.-L. (2024). Improving processing efficiency through workflow process reengineering, simulation and value stream mapping: a case study of business process reengineering. Business Process Management Journal. doi: https://doi.org/10.1108/BPMJ-11-2023-0869
Wells, M. G. (2000). Business process re‐engineering implementations using Internet technology. Business Process Management Journal, 6(2), 164–184. doi: https://doi.org/10.1108/14637150010321303
Wong, W. P. (2013). Business-process management: a proposed framework for future research. Total Quality Management & Business Excellence, 24(5–6), 719–732. doi: https://doi.org/10.1080/14783363.2013.776773
Yang, Y.-P. O., Shieh, H.-M., Leu, J.-D., & Tzeng, G.-H. (2008). A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International Journal of Operations Research, 5(3), 160–168.
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
Zahedi, M. R., Naghdi Khanachah, S., & Zahedi, M. (2024). Providing a structural model of lean sustainable supply chain with total quality management approach in the automotive industry. International Journal of Research in Industrial Engineering, 13(2), 152–165. doi: https://doi.org/10.22105/riej.2022.342951.1312
 
CAPTCHA Image