نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار، گروه مهندسی صنایع، واحد ابهر، دانشگاه آزاد اسلامی، ابهر، ایران
2 گروه آیندهپژوهی، دانشگاه شمال، آمل، ایران
3 گروه مهندسی صنایع، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
4 کارشناس ارشد مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران
5 گروه مهندسی صنایع، واحد ابهر، دانشگاه آزاد اسلامی، ابهر، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Understanding customer sentiment and analyzing it using artificial intelligence plays an important role in improving decision-making in the supply chain. This study aimed to investigate the impact of AI-based customer sentiment analysis on demand forecasting, inventory management, and product design in smart supply chains.Text, audio, and video data from Twitter, Facebook, Amazon, and customer service calls were collected and processed with a pre-trained BERT model for sentiment analysis. Also, Wav2Vec 2.0 and DeepFace models were used to analyze audio and video data. The findings showed that using sentiment analysis increased the accuracy of demand forecasting by 18%, reduced inventory management costs by 20%, and improved customer satisfaction with product design by 25%. The results show that integrating customer sentiment analysis with AI can optimize supply chain processes and increase decision-making accuracy.
کلیدواژهها [English]
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
ارسال نظر در مورد این مقاله