تحلیل احساسات مشتریان با هوش مصنوعی برای بهبود زنجیره تأمین هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، واحد ابهر، دانشگاه آزاد اسلامی، ابهر، ایران

2 گروه آینده‌پژوهی، دانشگاه شمال، آمل، ایران

3 گروه مهندسی صنایع، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

4 کارشناس ارشد مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

5 گروه مهندسی صنایع، واحد ابهر، دانشگاه آزاد اسلامی، ابهر، ایران.

10.22091/jemsc.2025.3654.1260

چکیده

درک احساسات مشتریان و تحلیل آن‌ها با استفاده از هوش مصنوعی نقش مهمی در بهبود تصمیم‌گیری در زنجیره تأمین ایفا می‌کند. این پژوهش با هدف بررسی تأثیر تحلیل احساسات مشتریان مبتنی بر هوش مصنوعی بر پیش‌بینی تقاضا، مدیریت موجودی و طراحی محصول در زنجیره تأمین هوشمند انجام شده است. داده‌های متنی، صوتی و ویدئویی از توییتر، فیسبوک، آمازون و تماس‌های خدمات مشتریان جمع‌آوری و با مدل BERT پیش‌آموزش‌یافته برای تحلیل احساسات پردازش شدند. همچنین، مدل‌های Wav2Vec 2.0 و DeepFace برای تحلیل داده‌های صوتی و تصویری به کار گرفته شدند. یافته‌ها نشان داد که استفاده از تحلیل احساسات دقت پیش‌بینی تقاضا را ۱۸٪ افزایش داده، هزینه‌های مدیریت موجودی را ۲۰٪ کاهش داده و رضایت مشتریان از طراحی محصول را ۲۵٪ بهبود بخشیده است. نتایج نشان می‌دهد که ادغام تحلیل احساسات مشتریان با هوش مصنوعی می‌تواند موجب بهینه‌سازی فرآیندهای زنجیره تأمین و افزایش دقت تصمیم‌گیری شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing customer sentiment with AI to improve the smart supply chain

نویسندگان [English]

  • Asghar Hemmati 1
  • Seyed Hesamoddin Motevalli 2
  • Adel Pourghader Chobar 3
  • Ali Akhlaghpour 4
  • Leila Nazari 5
1 Department of Industrial Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran
2 Department of Future Studies, Shomal University, Amol, Iran
3 Assistant Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
4 Master of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
5 Department of Industrial Engineering, Abhar branch, Islamic Azad University, Abhar, Iran
چکیده [English]

Understanding customer sentiment and analyzing it using artificial intelligence plays an important role in improving decision-making in the supply chain. This study aimed to investigate the impact of AI-based customer sentiment analysis on demand forecasting, inventory management, and product design in smart supply chains.Text, audio, and video data from Twitter, Facebook, Amazon, and customer service calls were collected and processed with a pre-trained BERT model for sentiment analysis. Also, Wav2Vec 2.0 and DeepFace models were used to analyze audio and video data. The findings showed that using sentiment analysis increased the accuracy of demand forecasting by 18%, reduced inventory management costs by 20%, and improved customer satisfaction with product design by 25%. The results show that integrating customer sentiment analysis with AI can optimize supply chain processes and increase decision-making accuracy.

کلیدواژه‌ها [English]

  • Sentiment analysis
  • Deep learning
  • Intelligent supply chain
  • Product design
  • Digital transformation
  1. Booranakittipinyo, A., Li, R. Y. M., & Phakdeephirot, N. (2024). Travelers' perception of smart airport facilities: An X (Twitter) sentiment analysis. Journal of Air Transport Management, 118, 102600. https://doi.org/10.1016/j.jairtraman.2024.102600
  2. Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
  3. Chen, X., Zhang, L., & Li, Y. (2019). The role of sentiment analysis in social media-based market trends prediction: A comprehensive review. Journal of Marketing Research and Insights, 12(3), 145-160. https://doi.org/10.1016/j.jmri.2019.03.015
  4. Day, M., Roberts, J., & Wilson, K. (2021). Inventory management optimization using AI-driven demand forecasting. International Journal of Supply Chain Management, 10(4), 350-367. https://doi.org/10.1016/j.ijscm.2021.05.004
  5. Fathi Hafshejani, K., Bagheri Sorkhi, M., & Modiri, M. (2023). Integrated hybrid model of sustainable supply chain in cement industry. Engineering Management and Soft Computing, 9(1), 1-18. https://doi.org/10.22091/JEMSC.2021.6422.1144
  6. Kayvanfar, V., Elomri, A., Kerbache, L., Vandchali, H. R., & El Omri, A. (2024). A review of decision support systems in the internet of things and supply chain and logistics using web content mining. Supply Chain Analytics, 100063. https://doi.org/10.1016/j.sca.2024.100063
  7. Kim, J., & Park, S. (2022). Leveraging NLP-based sentiment analysis for demand forecasting in retail supply chains. Operations and Supply Chain Management: An International Journal, 15(1), 89-102. https://doi.org/10.1108/OSCM.2022.1201
  8. Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
  9. Kumar, P., Choubey, D., Amosu, O. R., & Ogunsuji, Y. M. (2024). AI-enhanced inventory and demand forecasting: Using AI to optimize inventory management and predict customer demand. World journal of advanced research and reviews, 23(1), 1931-1944. https://doi.org/10.30574/wjarr.2024.23.1.2173
  10. Lee, H., & Chen, X. (2020). Social media sentiment analysis for product design alignment: A case study. Journal of Product and Process Innovation, 9(2), 104-120. https://doi.org/10.1016/j.jppi.2020.04.007
  11. Lee, H., & Chen, X. (2021). Machine learning applications in supply chain decision-making: A systematic review. Journal of Operations Management, 45(3), 223-240. https://doi.org/10.1016/j.jom.2021.06.012
  12. Lin, J. S., & Tsai, C. H. (2025). Integrating Machine Learning and Text Mining to Enhance Customer Value Propositions in Hotel Supply Chain. International Journal of Supply and Operations Management, 12(1), 48-63. https://dx.doi.org/10.22034/ijsom.2025.110543.3212
  13. Liu, R., Zhou, Y., & Wang, X. (2021). Integration of sentiment analysis in supply chain management: A framework for reducing costs and improving service. Computers & Industrial Engineering, 160, 107-124. https://doi.org/10.1016/j.cie.2021.107712
  14. Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.

    Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.

  15. Niavand, M., Adibi, M. A., & Pourghader Chobar, A. (2024). Selection of green supplier by multi-moora combination method and two-stage clustering. Engineering Management and Soft Computing, 10(1), 14-49. https://doi.org/10.22091/jemsc.2024.10977.1181
  16. Peng, Q., & Zhang, Y. (2020). Deep learning-based sentiment analysis for enhancing customer experience: Applications and trends. Expert Systems with Applications, 150, 113-121. https://doi.org/10.1016/j.eswa.2020.113121
  17. Sazegari, S., davoodi, S. M., & goli, A. (2024). Designing a green supply chain pricing model with a multi-criteria decision-making approach and game theory (case study: home appliance industry). Engineering Management and Soft Computing, 10(1), 92-122. https://doi.org/10.22091/jemsc.2024.11144.1191
  18. Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial neural networks in supply chain management, a review. Journal of Economy and Technology. 1, 179-196. https://doi.org/10.1016/j.ject.2023.11.002
  19. Tan, K., Lee, J., & Wong, T. (2021). Sentiment-driven product design optimization: Exploring customer feedback for innovation. Product Development Quarterly, 18(1), 55-75. https://doi.org/10.1002/pdq.2021.0005
  20. Zhang, Y., Wang, R., & Chen, J. (2020). Managing uncertainty in supply chains with deep learning-based sentiment analysis. Journal of Supply Chain Innovation, 14(3), 89-106. https://doi.org/10.1108/JSCI.2020.1403
CAPTCHA Image