Alsarhan, T., Alawneh, L., Al-Zinati, M., & Al-Ayyoub, M. (2019, 27-30 Oct. 2019). Bidirectional Gated Recurrent Units For Human Activity Recognition Using Accelerometer Data. 2019 IEEE SENSORS,
Anbazhagan, K., Swamy, G., Janani, R., & Farakte, A. (2024, 22-23 March 2024). Deep Learning based Human Activity Recognition in Smart Home. 2024 4th International Conference on Data Engineering and Communication Systems (ICDECS),
Chen, D., Yongchareon, S., Lai, E. M.-K., Yu, J., Sheng, Q. Z., & Li, Y. (2022). Transformer with bidirectional GRU for nonintrusive, sensor-based activity recognition in a multiresident environment.
IEEE Internet of Things Journal,
9(23), 23716-23727.
https://doi.org/https://doi.org/10.1109/JIOT.2022.3190307
Chitty-Venkata, K. T., Mittal, S., Emani, M., Vishwanath, V., & Somani, A. K. (2023). A survey of techniques for optimizing transformer inference.
Journal of Systems Architecture, 102990.
https://doi.org/https://doi.org/10.1016/j.sysarc.2023.102990
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Hussain, A., Hussain, T., Ullah, W., & Baik, S. W. (2022). Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
Computational Intelligence and Neuroscience,
2022, 3454167.
https://doi.org/10.1155/2022/3454167
Jiang, L., Wu, M., Che, L., Xu, X., Mu, Y., & Wu, Y. (2023). Continuous Human Motion Recognition Based on FMCW Radar and Transformer.
Journal of Sensors,
2023.
https://doi.org/https://doi.org/10.1155/2023/2951812
Kumar, P., Chauhan, S., & Awasthi, L. K. (2024). Human Activity Recognition (HAR) Using Deep Learning: Review, Methodologies, Progress and Future Research Directions.
Archives of Computational Methods in Engineering,
31(1), 179-219.
https://doi.org/https://doi.org/10.1007/s11831-023-09986-x
Le, T.-H., Tran, T.-H., & Pham, C. (2022). Human action recognition from inertial sensors with Transformer. 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR),
Lee, T.-H., Kim, H., & Lee, D. (2023). Transformer based Early Classification for Real-time Human Activity Recognition in Smart Homes. Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing,
Liu, B., & Fang, S. (2023). Multi-level wavelet network based on CNN-Transformer hybrid attention for single image deraining.
Neural Computing and Applications,
35(30), 22387-22404.
https://doi.org/10.1007/s00521-023-08899-x
Liu, Y., Huang, W., Jiang, S., Zhao, B., Wang, S., Wang, S., & Zhang, Y. (2023). TransTM: A device-free method based on time-streaming multiscale transformer for human activity recognition.
Defence Technology.
https://doi.org/https://doi.org/10.1016/j.dt.2023.02.021
Pan, J., Hu, Z., Yin, S., & Li, M. (2022). GRU with dual attentions for sensor-based human activity recognition. Electronics, 11(11), 1797.
Saidani, O., Alsafyani, M., Alroobaea, R., Alturki, N., Jahangir, R., & Menzli, L. J. (2023). An Efficient Human Activity Recognition using Hybrid Features and Transformer Model.
IEEE Access.
https://doi.org/https://doi.org/10.1109/ACCESS.2023.3314492
Sharifi-Renani, M., Mahoor, M. H., & Clary, C. W. (2023). BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
Sensors,
23(13), 5778.
https://doi.org/https://doi.org/10.3390/s23135778
Sunil, A., Sheth, M. H., & Shreyas, E. (2021). Usual and unusual human activity recognition in video using deep learning and artificial intelligence for security applications. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT),
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey.
Pattern recognition letters,
119, 3-11.
https://doi.org/https://doi.org/10.1016/j.patrec.2018.02.010
Wang, L., Zhang, Z., Wei, L., & Zhou, Y. (2024). CNN-GRU-Transformer Human Activity Recognition Model Based on Feature Fusion. 2024 6th International Conference on Frontier Technologies of Information and Computer (ICFTIC),
Wojek, C., Dorkó, G., Schulz, A., & Schiele, B. (2008). Sliding-windows for rapid object class localization: A parallel technique. Joint Pattern Recognition Symposium,
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
ارسال نظر در مورد این مقاله