بهبود فرآیند انتخاب تأمین‌کننده از طریق تبادل دانش و بهره‌گیری از فناوری زنجیره بلوک: بررسی چندین مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

2 دانشیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

10.22091/jemsc.2025.13129.1280

چکیده

به‌اشتراک‌گذاری دانش این امکان را برای سازمان‌ها فراهم می‌سازد تا فراتر از مرزهای داخلی خود عمل کرده و بهره‌وری بیشتری کسب کنند. با این حال، این فرایند با چالش‌هایی همچون حفظ حریم خصوصی و مالکیت اطلاعات مواجه است. این پژوهش به بررسی نقش هم‌افزای فناوری بلاکچین و تبادل دانش در فرآیند انتخاب تأمین‌کننده در صنایع مختلف از جمله تولید، الکترونیک، توسعه سخت‌افزار، نرم‌افزار و تجهیزات شبکه می‌پردازد. داده‌های پژوهش از طریق یک پرسشنامه ساختار‌یافته از ۳۳۶ نهاد دولتی خریدار در کارخانه‌ها به‌صورت مقطعی گردآوری شده و با بهره‌گیری از روش حداقل مربعات جزئی (PLS) تحلیل گردیده‌اند. نتایج نشان می‌دهد که به‌کارگیری هم‌زمان فناوری بلاکچین و به‌اشتراک‌گذاری دانش تأثیر چشم‌گیری در افزایش اثربخشی انتخاب تأمین‌کنندگان دارد. به‌طور خاص، دو ویژگی کلیدی بلاکچین یعنی غیرمتمرکز بودن و شفافیت، نقش میانجی مهمی در اثرگذاری تبادل دانش بر عملکرد زنجیره تأمین ایفا می‌کنند. همچنین، با ادغام فناوری بلاکچین در فرایند به‌اشتراک‌گذاری دانش، شاخص‌های عملکردی انتخاب تأمین‌کننده از جمله کیفیت و زمان تحویل بهبود قابل‌توجهی نشان می‌دهند

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Enhancing Supplier Selection Efficiency through Knowledge Sharing and Blockchain Technology: A Multiple Case Study

نویسندگان [English]

  • Amir Hossein Akbari 1
  • Mostafa Jafari 2
1 PhD student, Faculty of Industrial Engineering, University of Science and Technology, Tehran, Iran
2 Associate Professor, Department of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
چکیده [English]

Knowledge sharing enables organizations to extend beyond their boundaries and maximize its benefits. However, this process faces challenges related to privacy and ownership. This study examines the synergistic role of blockchain technology and knowledge sharing in supplier selection across various industries, including manufacturing, electronics, hardware development, software, and network equipment production. The research employs a structured questionnaire to collect cross-sectional survey data from 336 public procuring entities in factories. The data is analyzed using the Partial Least Squares (PLS) method. The findings indicate that both blockchain technology and knowledge sharing significantly enhance supplier selection efficiency. Specifically, two key features of blockchain technology—decentralization and transparency—play a crucial role in mediating the impact of knowledge sharing on supply chain performance. Moreover, when blockchain technology is integrated into knowledge sharing, supplier selection performance metrics, such as quality and delivery, show notable improvements.

کلیدواژه‌ها [English]

  • Blockchain
  • knowledge sharing
  • supplier selection
  • Partial Least Squares (PLS)
Agi, M. A. and A. K. Jha (2022). "Blockchain technology in the supply chain: An integrated theoretical perspective of organizational adoption." International Journal of Production Economics 247: 108458. https://doi.org/10.1016/j.ijpe.2022.108458
Akhavan, P., B. Elahi and M. Jafari (2014). "A new integrated knowledge model in supplier selection: The case of an Asian automotive supply chain." Education, Business and Society: Contemporary Middle Eastern Issues 7(4): 333-368. https://doi.org/10.1108/EBS-07-2014-0035
Alkhudary, R. and P. Féniès (2022). "Blockchain and Trust in Supply Chain Management: A Conceptual Framework." IFAC-PapersOnLine 55(10): 2402-2406. https://doi.org/10.1016/j.ifacol.2022.10.068
Arvidsson, A. P. and L. Melander (2020). "The multiple levels of trust when selecting suppliers–insights from an automobile manufacturer." Industrial Marketing Management 87: 138-149. https://doi.org/10.1016/j.indmarman.2020.02.011
Asadabadi, M. R. (2017). "A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain." European Journal of Operational Research 263(3): 1049-1062. https://doi.org/10.1016/j.ejor.2017.06.006
Bagozzi, R. P. and Y. Yi (1988). "On the evaluation of structural equation models." Journal of the academy of marketing science 16: 74-94. https://doi.org/10.1007/BF02723327
Bai, C., Q. Zhu and J. Sarkis (2024). "Circular economy and circularity supplier selection: a fuzzy group decision approach." International Journal of Production Research 62(7): 2307-2330. https://doi.org/10.1080/00207543.2022.2037779
Changalima, I. A., A. D. Mchopa and I. J. Ismail (2022). "Supplier development and public procurement performance: does contract management difficulty matter?" Cogent Business & Management 9(1): 2108224. https://doi.org/10.1080/23311975.2022.2108224
Cho, M., M. A. Bonn, L. Giunipero and J. S. Jaggi (2021). "Supplier selection and partnerships: Effects upon restaurant operational and strategic benefits and performance." International Journal of hospitality management 94: 102781. https://doi.org/10.1016/j.ijhm.2020.102781
Dong, Q. and Y. Yuan (2025). "Data‐driven distributionally robust supplier selection and order allocation problems considering carbon emissions." International Transactions in Operational Research 32(2): 1119-1145. https://doi.org/10.1111/itor.13328
Gao, J. and A. Bernard (2018). "An overview of knowledge sharing in new product development." The International Journal of Advanced Manufacturing Technology 94: 1545-1550. https://doi.org/10.1007/s00170-017-0140-5
Ghobadian, A., A. Stainer, J. Liu and T. Kiss (2016). A computerised vendor rating system. Developments in Logistics and Supply Chain Management: Past, Present and Future, Springer: 103-112. https://doi.org/10.1057/9781137541253_10
Hair Jr, J. F., M. Sarstedt, L. Hopkins and V. G. Kuppelwieser (2014). "Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research." European business review 26(2): 106-121. https://doi.org/10.1108/EBR-10-2013-0128
Hair Jr, J. F., M. Sarstedt, C. M. Ringle and S. P. Gudergan (2017). Advanced issues in partial least squares structural equation modeling, saGe publications.
Hosseini Dehshiri, S. J., M. Amiri, A. Mostafaeipour, D. Pamučar and T. Le (2024). "Enhancing supply chain performance by integrating knowledge management and lean, agile, resilient, and green paradigms." Journal of Management Analytics 11(4): 738-769. https://doi.org/10.1080/23270012.2024. 2408527
Islam, S., S. H. Amin and L. J. Wardley (2024). "A supplier selection & order allocation planning framework by integrating deep learning, principal component analysis, and optimization techniques." Expert Systems with Applications 235: 121121. https://doi.org/10.1016/j.eswa.2023.121121
Ivanov, D., A. Dolgui and B. Sokolov (2019). "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics." International journal of production research 57(3): 829-846. https://doi.org/10.1080/00207543.2018.1488086
Kouhizadeh, M. and J. Sarkis (2018). "Blockchain practices, potentials, and perspectives in greening supply chains." Sustainability 10(10): 3652. https://doi.org/10.3390/su10103652
Kumar, P. and A. J. Rajan (2019). "Knowledge management based supplier selection of wind turbine manufacturer supply chain." International Journal of Knowledge Management Studies 10(1): 3-20. https://doi.org/10.1504/IJKMS.2019.097117
Li, Z., L. Liu, A. V. Barenji and W. Wang (2018). "Cloud-based manufacturing blockchain: Secure knowledge sharing for injection mould redesign." Procedia Cirp 72: 961-966. https://doi.org/10.1016/j.procir.2018.03.004
Liang, D., Y. Fu and H. Garg (2024). "A novel robustness PROMETHEE method by learning interactive criteria and historical information for blockchain technology-enhanced supplier selection." Expert Systems with Applications 235: 121107. https://doi.org/10.1016/j.eswa.2023.121107
Modares, A., N. M. Farimani and F. Dehghanian (2024). "A new vendor-managed inventory four-tier model based on reducing environmental impacts and optimal suppliers selection under uncertainty." Journal of Industrial and Management Optimization 20(1): 188-220. 10.3934/jimo.2023074
Movahedipour, M., J. Zeng, M. Yang and X. Wu (2018). "Supply-chain sustainability barriers: an empirical assessment." Human Systems Management 37(1): 27-43. https://doi.org/10.3233/HSM-1710
Nikou, C. and S. J. Moschuris (2016). "An integrated approach for supplier selection in military critical application items." Journal of Public Procurement 16(1): 83-117. https://doi.org/10.1108/JOPP-16-01-2016-B004
Nyame, G., Z. Qin, K. O.-B. Obour Agyekum and E. B. Sifah (2020). "An ECDSA approach to access control in knowledge management systems using blockchain." Information 11(2): 111. https://doi.org/10.3390/info11020111
Paliwal, M., R. Dikkatwar, N. Chatradhi and M. Valeri (2024). Evolution of research in knowledge management and competitive advantage. Knowledge Management and Knowledge Sharing: Business Strategies and an Emerging Theoretical Field, Springer: 3-22. https://doi.org/10.1007/978-3-031-37868-3_1
Philsoophian, M., P. Akhavan and M. Namvar (2022). "The mediating role of blockchain technology in improvement of knowledge sharing for supply chain management." Management Decision 60(3): 784-805. https://doi.org/10.1108/MD-08-2020-1122
Prior, D. D., M. Saberi, N. K. Janjua and F. Jie (2022). "Can i trust you? incorporating supplier trustworthiness into supplier selection criteria." Enterprise Information Systems 16(8-9): 1878393. https://doi.org/10.1080/17517575.2021.1878393
Saberi, S., M. Kouhizadeh, J. Sarkis and L. Shen (2019). "Blockchain technology and its relationships to sustainable supply chain management." International journal of production research 57(7): 2117-2135. https://doi.org/10.1080/00207543.2018.1533261
Shendryk, V., D. Bychko, Y. Parfenenko, O. Boiko and N. Ivashova (2019). "Information system for selection the optimal goods supplier." Procedia Computer Science 149: 57-64. https://doi.org/10.1016/j.procs.2019.01.107
Shojaei, P. and A. Bolvardizadeh (2020). "Rough MCDM model for green supplier selection in Iran: a case of university construction project." Built Environment Project and Asset Management 10(3): 437-452. https://doi.org/10.1108/BEPAM-11-2019-0117
Sun, Y., M. Shahzad and A. Razzaq (2022). "Sustainable organizational performance through blockchain technology adoption and knowledge management in China." Journal of Innovation & Knowledge 7(4): 100247. https://doi.org/10.1016/j.jik.2022.100247
Taherdoost, H. and A. Brard (2019). "Analyzing the process of supplier selection criteria and methods." Procedia Manufacturing 32: 1024-1034. https://doi.org/10.1016/j.promfg.2019.02.317
Tavana, M., A. Shaabani, D. Di Caprio and A. Bonyani (2021). "An integrated group fuzzy best-worst method and combined compromise solution with Bonferroni functions for supplier selection in reverse supply chains." Cleaner Logistics and Supply Chain 2: 100009. https://doi.org/10.1016/j.clscn.2021.100009
Tian, F. (2016). An agri-food supply chain traceability system for China based on RFID & blockchain technology. 2016 13th international conference on service systems and service management (ICSSSM), IEEE. 10.1109/ICSSSM.2016.7538424
Treiblmaier, H. and M. Garaus (2023). "Using blockchain to signal quality in the food supply chain: The impact on consumer purchase intentions and the moderating effect of brand familiarity." International Journal of Information Management 68: 102514. https://doi.org/10.1016/j.ijinfomgt.2022.102514
Ulhaq, I., M. M. Khalfan, T. Maqsood and T. Le (2017). "Development of a conceptual framework for knowledge management within construction project supply chain." International Journal of Knowledge Management Studies 8(3-4): 191-209. https://doi.org/10.1504/IJKMS.2017.087066
Wang, C. and Q. Hu (2020). "Knowledge sharing in supply chain networks: Effects of collaborative innovation activities and capability on innovation performance." Technovation 94: 102010. https://doi.org/10.1016/j.technovation.2017.12.002
Xu, X., D. Zhu, X. Yang, S. Wang, L. Qi and W. Dou (2021). "Concurrent practical byzantine fault tolerance for integration of blockchain and supply chain." ACM Transactions on Internet Technology (TOIT) 21(1): 1-17. https://doi.org/10.1145/3395331
Yadavalli, V. S., J. D. Darbari, N. Bhayana, P. Jha and V. Agarwal (2019). "An integrated optimization model for selection of sustainable suppliers based on customers’ expectations." Operations Research Perspectives 6: 100113. https://doi.org/10.1016/j.orp.2019.100113
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Rezaeenour, J. , Hashempoor, M. and Akbari, A. H. (2020). A four-echelon supply chain considering economic, social and regions satisfaction goals. Journal of Industrial Engineering Research in Production Systems7(15), 199-217. doi: 10.22084/ier.2020.19597.1875
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Hosseini, S., Rezaeenour, J., Masoumi, M., & Akbari, A. H. (2021). A The Evaluation of Knowledge Management in Supply Chain Using EFQM Framework, Fuzzy Multi-Attribute Decision Making and Multi-Objective Programming. Industrial Management Studies19(60), 193-235. DOI: 10/22054/jims. 2021/407040/2289
Rezaenoor, J., Saadi, G., & Akbari, A. (2019). Design of a Decision Support System to Diagnose and Predict Heart Disease using Artificial Neural Network; a case study (Ayatollah Golpayegani Hospital in Qom). Management Strategies in Health System3(4), 320-331. 10.18502/mshsj.v3i4.515
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing10(2), 204-222. doi: 10.22091/jemsc.2025.11853.1230
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management9(3), 32-7. doi: 10.22091/stim.2023.8708.1877
Tavakkoli-Moghaddam, R., Akbari, A. H., Tanhaeean, M., Moghdani, R., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2024). Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Systems with Applications, 239, 122394. https://doi.org/10.1016/j.eswa.2023.122394
Yavari, M., Marvi, M., & Akbari, A. H. (2020). Semi-permutation-based genetic algorithm for order acceptance and scheduling in two-stage assembly problem. Neural Computing and Applications, 32, 2989-3003. https://doi.org/10.1007/s00521-019-04027-w
Tanhaeean, M., Tavakkoli-Moghaddam, R., & Akbari, A. H. (2022). Boxing match algorithm: A new meta-heuristic algorithm. Soft Computing, 26(24), 13277-13299. https://doi.org/10.1007/s00500-022-07518-6
Rezaeenour, J., Hashempoor, M., & Akbari, A. H. (2020). A four-echelon supply chain considering economic, social and regions satisfaction goals. Journal of Industrial Engineering Research in Production Systems, 7(15), 199-217. 
Yavari, M., & Akbari, A. H. (2023). Service level and profit maximisation in order acceptance and scheduling problem with weighted tardiness. International Journal of Industrial and Systems Engineering, 43(3), 331-362. https://doi.org/10.1504/IJISE.2023.129138
Sazvar, Z., Tanhaeean, M., Aria, S. S., Akbari, A., Ghaderi, S. F., & Iranmanesh, S. H. (2020). A computational intelligence approach to detect future trends of COVID-19 in France by analyzing chinese data. Health Education and Health Promotion, 8(3), 107-113. 
Hosseini, S., Rezaeenour, J., Masoumi, M., & Akbari, A. H. (2021). A The Evaluation of Knowledge Management in Supply Chain Using EFQM Framework, Fuzzy Multi-Attribute Decision Making and Multi-Objective Programming. Industrial Management Studies, 19(60), 193-235.
Rezaenoor, J., Saadi, G., & Akbari, A. (2019). Design of a Decision Support System to Diagnose and Predict Heart Disease using Artificial Neural Network; a case study (Ayatollah Golpayegani Hospital in Qom). Management Strategies in Health System, 3(4), 320-331.
Akbari, A. H., & Jafari, M. (2025). Development of a Deep Reinforcement Learning Algorithm in a Dynamic Cellular Manufacturing System Considering Order Rejection, Case Study: Stone Paper Factory. Engineering Management and Soft Computing, 10(2), 204-222.
Jafari, M., & Akbari, A. H. (2025). Efficient Algorithms for Dynamic Cellular Manufacturing Systems by Considering Blockchain-Enabled (Case Study: Stone Paper Factory). Journal of Advanced Manufacturing Systems.
Jabbari, M., Rezaeenour, J., & Akbari, A. H. (2023). A Feature Selection Method Based on Information Theory and Genetic Algorithm. Sciences and Techniques of Information Management, 9(3), 32-7.
Hosseini, S. J., Rezaeenoor, J., Akbari, A. H., & Marjani, M. R. (2021). Operating Room Scheduling with Respect to Dynamic Facilities and Surgeon Specialty. Industrial Management Journal, 13(2), 194-221.
Hosseini, S., REZAEENOUR, J., & Akbari, A. (2021). The Evaluation of Knowledge Management and Sharing in Supply Chain Using EFQM Framework, Fuzzy MCDM and Multi-Objective Programming.
CAPTCHA Image