بهره‌گیری از توسعه‌ی مدل‌رانده برای ارزیابی شاخص‌های کلیدی عملکرد در شهر هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی کامپیوتر، دانشکده فنی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

رشد سریع شهرنشینی، به‌ویژه در کلان‌شهرها، چالش‌های پیچیده‌ای در مدیریت ترافیک، مصرف انرژی و کیفیت زندگی ایجاد کرده است. استفاده از شاخص‌های کلیدی عملکرد ابزار مهمی برای ارزیابی سیستم‌های شهری است، اما محاسبه‌ی دقیق آن‌ها به دلیل حجم بالای داده‌ها و پیچیدگی محاسبات، چالشی اساسی محسوب می‌شود. این پژوهش یک رویکرد نوین مبتنی بر مهندسی مدل‌رانده ارائه می‌دهد که با طراحی یک زبان مدل‌سازی خاص دامنه و ویرایشگر گرافیکی کاربرپسند، محاسبه‌ی خودکار شاخص‌ها را ممکن می‌سازد. این رویکرد ضمن کاهش پیچیدگی‌های محاسباتی، فرآیند ارزیابی را تسهیل و دسترسی سریع‌تر و دقیق‌تر به اطلاعات را برای مدیران شهری فراهم می‌کند. ارزیابی زبان مدل‌سازی پیشنهادی بر اساس معیارهای قابلیت نگهداری، درک‌پذیری و توسعه‌پذیری، نشان‌دهنده‌ی برتری آن نسبت به روش‌های مشابه است. نتایج پژوهش حاکی از بهبود قابل توجه در دقت و کارایی ارزیابی شاخص‌ها بوده و این امکان را فراهم می‌کند که تصمیمات مدیریتی دقیق‌تر و کارآمدتری اتخاذ شود. ویژگی‌های زبان پیشنهادی، شامل فرامدل ساختاریافته و دسته‌بندی‌های تخصصی، به کاهش زمان مدل‌سازی، کاهش خطاهای انسانی و افزایش دقت محاسبات کمک شایانی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Leveraging Model-Driven Development to Evaluate Key Performance Indicators for Smart City

نویسندگان [English]

  • Seyed Masoud Hoseini
  • Leila Samimi-Dehkordi
  • Abbas Horri
Computer Engineering Department, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

Rapid urbanization, particularly in megacities, poses complex challenges for traffic management, energy consumption, and quality of life. Key Performance Indicators (KPIs) are crucial for evaluating urban systems, but their accurate calculation is challenging due to the large volume of data and computational complexity involved. This research presents a novel model-driven engineering approach that automates KPI calculation through a domain-specific modeling language (DSML) and a user-friendly graphical editor. This approach simplifies the evaluation process by reducing computational complexity, providing city managers with faster and more accurate access to information. An evaluation of the proposed DSML, based on maintainability, understandability, and extensibility, demonstrates its advantages over existing methods. The results show a significant improvement in the accuracy and efficiency of KPI evaluation, enabling more informed and effective management decisions. The features of DSML, including a structured metamodel and specialized classifications, significantly reduce modeling time, minimize human error, and enhance computational accuracy.

کلیدواژه‌ها [English]

  • Key Performance Indicator
  • Smart City
  • Model-Driven Engineering
  • Domain-Specific Modeling Language
Al Sharif, R., & Pokharel, S. (2022). Smart city dimensions and associated risks: Review of literature. Sustainable cities and society, 77, 103542.‏ https://doi.org/10.1016/j.scs.2021.103542
Alonso-Martínez, D., Jiménez-Parra, B., & Cabeza-García, L. (2024). Theoretical framework to foster and assess sustainable agriculture practices: Drivers and key performance indicators. Environmental and Sustainability Indicators, 23, 100434.‏ https://doi.org/10.1016/j.indic.2024.100434
Anschütz, C., Ebner, K., & Smolnik, S. (2024). Size does matter: A maturity model for the special needs of small and medium-sized smart cities. Cities, 150, 104998.‏ https://doi.org/10.1016/j.cities.2024.104998
Baradaran Kazemzadeh, R. (2023). Investigating the impact of implementation ISO 9000 on Inventory of Supply Chain. Engineering Management and Soft Computing9(1), 189-203. doi: 10.22091/JEMSC.2022.7795.1164 (in Persian)
Bastidas, V., Reychav, I., Ofir, A., Bezbradica, M., & Helfert, M. (2022). Concepts for modeling smart cities: An ArchiMate extension. Business and Information Systems Engineering, 64(3), 359–373. https://doi.org/10.1007/s12599-021-00715-1
Belaid, F., Ramdani, B., & Abdellatif, M. (2024). Can Smart Cities Be Sustainable? An Emerging Field of Research. Journal of Urban Technology, 1–22. https://doi.org/10.1080/10630732.2024.2352992
Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2019). Quality-driven detection and resolution of metamodel smells. IEEE Access, 7, 16364-16376.‏ DOI: 10.1109/ACCESS.2019.2891357
Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in practice. Morgan & Claypool Publishers.‏ https://doi.org/10.1007/978-3-031-02549-5
da Silva Tomadon, L., do Couto, E. V., de Vries, W. T., & Moretto, Y. (2024). Smart city and sustainability indicators: A bibliometric literature review. Discover Sustainability, 5(1), 143.‏ https://doi.org/10.1007/s43621-024-00328-w
Erazo-Garzon, L., Quinde, K., Bermeo, A., & Cedillo, P. (2023, October). A Domain-Specific Language and Model-Based Engine for Implementing IoT Dashboard Web Applications. In Conference on Information and Communication Technologies of Ecuador (pp. 412-428). Cham: Springer Nature Switzerland.‏ https://doi.org/10.1007/978-3-031-45438-7_28
Fernandes, I. C., de Sá-Soares, F., Tereso, A., & Sousa, P. (2024). Governance models for non-profit organizations: a literature review. Procedia Computer Science, 239, 1950-1957.‏ https://doi.org/10.1016/j.procs.2024.06.379
Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart Cities—A Structured Literature Review. Smart Cities6(4), 1719-1743. https://doi.org/10.3390/smartcities6040080
Ghazinoory, S., Roshandel, J., Parvin, F., Nasri, S., & Fatemi, M. (2024). Smart city maturity models: A multidimensional synthesized approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(1), e1516.‏ https://doi.org/10.1002/widm.1516
Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso, F. P., & Medeiros, B. (2020). Systematic mapping study on domain-specific language development tools. Empirical Software Engineering, 25, 4205-4249.‏ https://doi.org/10.1007/s10664-020-09872-1
Jnr, B.A. (2023). Sustainable mobility governance in smart cities for urban policy development–a scoping review and conceptual model. Smart and Sustainable Built Environment.‏ https://doi.org/10.1108/SASBE-05-2023-0109
Karal, F. S., & Soyer, A. (2024). A systematic literature review: Setting a basis for smart and sustainable city performance measurement. Sustainable Development, 32(1), 555-573.‏ https://doi.org/10.1002/sd.2693
Kolovos, D. S., Paige, R. F., & Polack, F. A. (2006, July). The epsilon object language (EOL). In European conference on model driven architecture-foundations and applications (pp. 128-142). Berlin, Heidelberg: Springer Berlin Heidelberg.‏ https://doi.org/10.1007/11787044_11
Mohammadzadeh, Z., Saeidnia, H. R., Lotfata, A., Hassanzadeh, M., & Ghiasi, N. (2023). Smart city healthcare delivery innovations: a systematic review of essential technologies and indicators for developing nations. BMC Health Services Research, 23(1), 1180.‏ https://doi.org/10.1186/s12913-023-10200-8
Okonta, D. E., & Vukovic, V. (2024). Smart cities software applications for sustainability and resilience. Heliyon, 10(12).‏ https://doi.org/10.1016/j.heliyon.2024.e32654
Rezaee, A. A., & Zahedi, M. H. (2022). Optimal metrics for evaluating reusability in web applications. Engineering Management and Soft Computing8(1), 21-36. doi: 10.22091/ JEMSC.2018.2550.1062 (in Persian)
Rodríguez Bolívar, M. P., Pereira-Piedra, I. C., & Alcaide Muñoz, L. (2024). Looking for Improving the Urban Areas: the Case of Costa Rican Cantons in Their Path to Become Smart. Journal of the Knowledge Economy, 1-55.‏ Cardenas Rodriguez, R. (2024). Integrative Modeling, Simulation, and Optimization Techniques for Efficient Data-Intensive Applications in Edge Computing Infrastructures (Doctoral dissertation, Carleton University; Universidad Politécnica de Madrid).‏ https://doi.org/10.22215/etd/2023-15873
Samimi-Dehkordi, L., Zamani, B., & Kolahdouz-Rahimi, S. (2019). Leveraging product line engineering for the development of domain-specific metamodeling languages. Journal of Computer Languages, 51, 193-213.‏ https://doi.org/10.1016/j.cola.2019.02.006
Sanctis, M., Iovino, L., Rossi, M. T., & Wimmer, M. (2022). MIKADO: A smart city KPIs assessment modeling framework. Software and Systems Modeling, 21(1), 281–309. https://doi.org/10.1007/s10270-021-00917-6
Shahraki, M., & Jalali Bighdeli, A. (2023). Blockchain based micropayment for e-health IOT sensors. Engineering Management and Soft Computing9(1), 75-89. doi: 10.22091/JEMSC.2022.7046.1153 (in Persian)
Trendowicz, A., Groen, E. C., Henningsen, J., Siebert, J., Bartels, N., Storck, S., & Kuhn, T. (2023). User experience key performance indicators for industrial IoT systems: A multivocal literature review. Digital Business, 3(1), 100057.‏ https://doi.org/10.1016/j.digbus.2023.100057
Van de Ven, M., Lara Machado, P., Athanasopoulou, A., Aysolmaz, B., & Turetken, O. (2023). Key performance indicators for business models: a systematic review and catalog. Information Systems and e-Business Management, 21(3), 753-794.‏ https://doi.org/10.1007/s10257-023-00650-2
Wang, R., Xu, C. K., & Wu, X. (2024). Open Government Data (OGD) as a catalyst for smart city development: Empirical evidence from Chinese cities. Government Information Quarterly, 41(4), 101983.‏ https://doi.org/10.1016/j.giq.2024.101983
CAPTCHA Image