بهینه سازی شبیه سازی چند هدفه سیستم بارگذاری بیل مکانیکی-کامیون برای استخراج سنگ‌های معدنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، واحد نور، دانشگاه آزاد اسلامی، نور، ایران

2 گروه مهندسی صنایع، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

3 گروه آمار و ریاضی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران

4 گروه مهندسی کامپیوتر، واحد نور، دانشگاه آزاد اسلامی، نور، ایران

چکیده

سیستم بارگذاری بیل-کامیون یکی از مهمترین اجزای حمل و نقل در یک معدن روباز است. برای ارزیابی عملکرد سیستم بیل-کامیون، رویکرد مدلسازی شبیه سازی با روش‌های فراابتکاری ترکیب شده است و یک رویکرد مناسب برای مطالعه و بهینه‌سازی رفتار پیچیده چنین سیستمی تبدیل شده است. هدف از این مطالعه شناسایی تعداد تقریبی بهینه کامیون و بیل در سیستم اعزام تجهیزات در معدن مس سرچشمه در استان کرمان برای افزایش بازده ماهانه و کاهش هزینه های حمل و نقل می باشد. دو الگوریتم بهینه‌سازی چندهدفه تکاملی، به نام‌های الگوریتم ژنتیک مرتب‌سازی غیرمسلط (NSGA-II) و الگوریتم ژنتیک سریع پارتو (FastPGA)، برنامه‌ریزی شده‌اند و با مدل شبیه‌سازی سیستم بیل-کامیون توسعه‌یافته در بسته نرم‌افزاری Arena به منظور انجام شبیه‌سازی، برنامه‌ریزی و ادغام شده‌اند. فرآیند بهینه سازی نتایج تجربی نشان می‌دهد که راه‌حل‌های تقریباً بهینه‌ای وجود دارد که می‌تواند میانگین هزینه حمل و نقل ماهانه را تا 10 درصد کاهش دهد و متوسط توان ماهیانه را تا 11 درصد افزایش دهد.

کلیدواژه‌ها

موضوعات


  • Abolghasemian, M., & Darabi, H. (2018). Simulation based optimization of haulage system of an open-pit mine: Meta modeling approach. Organizational resources management researchs, 8(2), 1-17. http://dorl.net/dor/20.1001.1.22286977.1397.8.2.2.6

    • Abolghasemian, M., Bigdeli, H., & Shamami, N. (2024). Locating Routing Problem (LRP) of distribution of priority support items to ground forces in war conditions. Engineering Management and Soft Computing, 10(1), 262-292. https://doi.org/10.22091/jemsc.2024.11320.1206

    Abolghasemian, M., Ghane Kanafi, A., & Daneshmandmehr, M. (2020). A two-phase simulation-based optimization of hauling system in open-pit mine. Iranian journal of management studies, 13(4), 705-732. https://doi.org/10.22059/ijms.2020.294809.673898

    Abolghasemian, M., Kanafi, A. G., & Daneshmand-Mehr, M. (2022). Simulation-based multiobjective optimization of open-pit mine haulage system: a modified-NBI method and Meta modeling approach. Complexity, 2022. https://doi.org/10.1155/2022/3540736

    Ahmed, M. A., Al – Khamis, T. M. (2009). Simulation Optimization for an Emergency Department Healthcare Unit in Kuwait, European Journal of Operational Research, 198, 936-942. https://doi.org/10.1016/j.ejor.2008.10.025

    Al - Khamis, T. M., & Ahmed, M. A. (2005). Simulation – Based Optimization for Repairable Systems Using Practice Swarm Algorithm. Proceedings of the Winter Simulation Conference, 857-861. https://doi.org/10.1109/WSC.2005.1574332

    Al – Rafie, A., Fouad, R., Li, M., Shurrab, M. (2014).Applying Simulation and DEA to Improve Performance of Emergency Department in Jordanian Hospital. Simulation Modeling Practice and Theory, 4, 59-72. https://doi.org/10.1016/j.simpat.2013.11.010

    Amouzgar, K. (2018). Meta model based Multi objective optimization with Finite – Element Application, Doctorial Dissertation, University of Skovde.

    Azizi, S., Shakibi, H., Shokri, A., Chitsaz, A., & Yari, M. (2023). Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system. Applied Energy, 332, 120487. https://doi.org/10.1016/j.apenergy.2022.120487

    Cabrera E., Taboda M., Iglesias M., Eplede F., Luque E. (2011). Optimization of Health Care Emergency Department by Agent – Based Simulation. Procedia Computer Science: 4, 1880-1899. https://doi.org/10.1016/j.procs.2011.04.204

    Chinbat, U., & Takakuwa, S. (2008, December). Using operation process simulation for a six sigma project of mining and iron production factory. In Simulation Conference, WSC 2008. Winter (pp. 2431-2438). IEEE. https://doi.org/10.1109/WSC.2008.4736351

    Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.

    Dengiz B., Tansel Y., Onder B. (2015). A Meta Model Based Simulation Optimization Using Hybrid Simulation – Analytical Modeling to Increase the Productivity in Automotive Industry, Mathematics and Computers in Simulation. https://doi.org/10.1016/j.matcom.2015.07.005

    Dengiz, B. (2009). Redesign of PCB Production Line with Simulation and Taguchi Design. Proceedings of the Winter Simulation Conference, 2197 – 2204. https://doi.org/10.1109/WSC.2009.5429646

    Dengiz, B., & Akbay, K. S. (2000). Computer Simulation of a PCB Production Line: Meta – Modeling Approach. International Journal Production Economy. 63, 195 – 205. https://doi.org/10.1016/S0925-5273(99)00013-4

    Dengiz, B., Bektas, T., Ultanir, A. E. (2006). Simulation Optimization Based DSS Application: A Diamond Tool Production Line in Industry, Simulation Model Practice Theory, 14(3), 296 – 312. https://doi.org/10.1016/j.simpat.2005.07.001

    Ercelebi, S. G., & Bascetin, A. (2009). Optimization of shovel-truck system for surface mining. Journal of The Southern African Institute of Mining and Metallurgy, 109, 433-439.

    Eskandari, H. R., Darabi, H., Hosseinzadeh, S. A. H. (2013). Simulation and Optimization of Haulage System of an Open-Pit Mine, Proceedings of the 13th Summer Computer Simulation Conference, Article No 37, Toronto, Ontario, Canada.

    Eskandari, H., & Geiger, C. D. (2008). A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems. Journal of Heuristics, 14(3), 203-241. https://doi.org/10.1007/s10732-007-9037-z

    Feng, C.-W., and H.-T. Wu. (2006). Integrating fmGA and CYCLONE to optimize the schedule of dispatching RMC trucks. Automation in Construction 15(2): 186-199. https://doi.org/10.1016/j.autcon.2005.04.001

    Govinda Raj, M., Vardhan, H., & Rao, Y. V. (2009). Production optimisation using simulation models in mines: a critical review. International Journal of Operational Research, 6(3), 330-359. https://doi.org/10.1504/IJOR.2009.026937

    Grewal, C. S., Rogers, P., & Enns, S. T. (2010). Performance evaluation of inventory replenishment strategies in a capacitated supply chain under optimal parameter settings. International Journal of Value Chain Management, 4(3), 195-212. https://doi.org/10.1504/IJVCM.2010.033612

    • Hemmati, A., Kaveh, F., Abolghasemian, M., & Pourghader Chobar, A. (2024). Simulating the line balance to provide an improvement plan for optimal production and costing in petrochemical industries. Engineering Management and Soft Computing, 10(1). https://doi.org/10.22091/jemsc.2024.11189.1198

    Hurrion, R. (1997). An Example of Simulation Optimisation Using a Neural Network Metamodels: Finding the optimum number of Kanbans in a Manufacturing System, Journal of the Operational Research Society, 48(11), 1105 – 1112. https://doi.org/10.1057/palgrave.jors.2600468

    Jahangiri, S., Abolghasemian, M., Ghasemi, P., & Chobar, A. P. (2023). Simulation-based optimisation: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering, 43(1), 1-19. https://doi.org/10.1504/IJISE.2023.128399

    Karmellos, M., Mavrotas, G. (2019). Multi-objective optimization and comparison framework for the design of distributed energy systems, energy conversion and management, 180, 473-495. https://doi.org/10.1016/j.enconman.2018.10.083

    Kleijnen, J. P. C., & Gaury, E. G. A. (2001). Optimization versus robustness in simulation: a practical methodology, with a production-management case-study: Citeseer.

    Kleijnen, J. P. C., & Sargent, R. G. (2000). A Methodology for Fitting and Validating Metamodels in Simulation. European Journal of Operatioanal Research, 120, 14 – 29. https://doi.org/10.1016/S0377-2217(98)00392-0

    Lin, R. C., Sir, M. Y., & Pasupathy, K. S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services. Omega, 41(5), 881-892. https://doi.org/10.1016/j.omega.2012.11.003

    Liu, Y., Shen, W., Zhang, C., & Sun, X. (2023). Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors. Robotics and Computer-Integrated Manufacturing, 80, 102478. https://doi.org/10.1016/j.rcim.2022.102478

    Mena, R., Zio, E., Kristjanpoller, F., & Arata, A. (2013). Availability-based simulation and optimization modeling framework for open-pit mine truck allocation under dynamic constraints. International Journal of Mining Science and Technology, 23(1), 113-119. https://doi.org/10.1016/j.ijmst.2013.01.017

    Napalkova, L., & Merkuryeva, G. (2012). Multi-objective stochastic simulation-based optimisation applied to supply chain planning. Technological and Economic Development of Economy, 18(1), 132-148. https://doi.org/10.3846/20294913.2012.661190

    Nguyen, A. T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058. https://doi.org/10.1016/j.apenergy.2013.08.061

    Piermarini, C., & Roma, M. (2023). A Simulation--Based Optimization approach for analyzing the ambulance diversion phenomenon in an Emergency-Department network. arXiv preprint arXiv:2309.00643. https://doi.org/10.48550/arXiv.2309.00643

    Prez, S., Ortega, J., Gutierrez, A. (2019). A multi-objective optimization approach for sustainable water management for places with over-exploited water resources, computer and chemical engineering, 121, 158-173. https://doi.org/10.1016/j.compchemeng.2018.10.003

    Qin, H., Su, X., Li, G., Jin, X., & Yu, M. (2023). A simulation based meta-heuristic approach for the inbound container housekeeping problem in the automated container terminals. Maritime Policy & Management, 50(4), 515-537. https://doi.org/10.1080/03088839.2021.1934582

    Qing, H., W. Cai, L. Fa, and W. Chang. (2008). Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS. Journal of China University of Mining and Technology 18(2): 288-292. https://doi.org/10.1016/S1006-1266(08)60061-9

    Russell, A., Taghipour, SH. (2019). Multi-objective optimization of scheduling problems in low-volume low variety production systems, International journal of Production Economics, 208, 1-16. https://doi.org/10.1016/j.ijpe.2018.11.005

    Syberfeldt, A., Andersson, M., Ng, A., Bengtsson, V. (2015). Multi-objective evolutionary simulation-optimization of personnel scheduling, International Journal of Artificial Intelligence & Applications, 6(1), 41-52.

    Syberfeldt, A., Ng, A., John, R. I., & Moore, P. (2009). Multi-objective evolutionary simulation-optimisation of a real-world manufacturing problem, Robotics and Computer-Integrated Manufacturing, 25(6), 926-931. https://doi.org/10.1016/j.rcim.2009.04.013

    Vasquez Coronado, P. P. (2014). Optimization of the Haulage Cycle Model for Open Pit Mining Using a Discrete-Event Simulator and a Context-Based Alert System.  Master Thesis from the Faculty of Mining, Geological, Geophysical and Engineering, University of Arizona.

    Willis, K. O., & Jones, D. F. (2008). Multi-objective simulation optimization through search heuristics and relational database analysis. Decision Support Systems, 46(1), 277-286. https://doi.org/10.1016/j.dss.2008.06.012

    Y.T. Ic. (2012) an experimental design approach using TOPSIS method for the selection of computer-integrated manufacturing technologies, Robot. Comput. Integr. Manuf. 28, 245–256. https://doi.org/10.1016/j.rcim.2011.09.005

    Yalçınkaya, Ö., & Bayhan, G. M. (2009). Modelling and optimization of average travel time for a metro line by simulation and response surface methodology, European journal of operational research, 196(1), 225-233. https://doi.org/10.1016/j.ejor.2008.03.010

    • Zadeh, A. H., Sharifi, J., & Yadegar, M. (2024). Path Planning For A Mobile Robot Using The Chessboard Method And Gray Wolf Optimization Algorithm In Static And Dynamic Environments. Engineering Management and Soft Computing, 10(1). 67-91. https://doi.org/10.22091/jemsc.2024.11127.1189

    Zeinali F., Mahootchi M., Sepehri M M. (2015). Resource Planning in the Emergency Department: A Simulation – Based Meta Modeling Approach, Simulation Modeling Practice and Theory, 53(2), 123-148. https://doi.org/10.1016/j.simpat.2015.02.002

CAPTCHA Image