مدل بهینه سازی چند هدفه غیر خطی برنامه ریزی تولید بر اساس منطق فازی و یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی صنایع، واحدساری، دانشگاه آزاد اسلامی، ساری، ایران

10.22091/jemsc.2024.11186.1197

چکیده

این تحقیق به معرفی یک مدل بهینه‌سازی چندهدفه غیرخطی می‌پردازد که برای بهینه‌سازی هم‌زمان سود و رضایت مشتری در سیستم‌های تولیدی طراحی شده است. مسأله مورد بررسی شامل بهینه‌سازی در شرایط پیچیده و نامطمئن تولید است که با محدودیت‌های منابع و زمان مواجه است. مدل پیشنهادی با به‌کارگیری توابع هدف غیرخطی و تحلیل دقیق شرایط عملیاتی، راه‌حل‌های بهینه‌ای را برای مدیران ارائه می‌دهد. این منطق فازی با الگوریتم‌های یادگیری ماشین نظیر شبکه‌های عصبی و یادگیری تقویتی ترکیب شده است تا مدلی هوشمند و انعطاف‌پذیر ایجاد شود که به‌طور مؤثری با تغییرات ناگهانی در محیط‌های پویا سازگار می‌شود. این مدل از ترکیب الگوریتم‌های ژنتیک مرتب سازی غیر مسلط چهارم (NSGA-IV ) و شبکه انتخاب متغیر (VSN) در یک چارچوب ترکیبی بهره می‌برد و رویکردی پیشرفته و چندوجهی برای حل مسائل پیچیده بهینه‌سازی چندهدفه ارائه می‌کند. نتایج پارتو-بهینه حاصل از این مدل نشان‌دهنده عملکرد کارآمد و بهینه آن است. مدل پیشنهادی می‌تواند به‌عنوان منبعی عملی و راهبردی برای مدیران و تصمیم‌گیران در بهینه‌سازی تولید و ارتقاء رضایت مشتری در شرایط نامطمئن و پویا مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-linear multi-objective optimization model of production planning based on fuzzy logic and machine learning

نویسندگان [English]

  • zahra Saeidi Mobarakeh 1
  • hossein amoozadkhalili 2
1 Department of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Industrial Engineering, Sari Branch, Islamic Azad University, Sari, Iran
چکیده [English]

This research introduces a nonlinear multi-objective optimization model that is designed to simultaneously optimize profit and customer satisfaction in production systems. The investigated problem includes optimization in complex and uncertain conditions of production, which is faced with resource and time limitations. The proposed model provides optimal solutions for managers by using non-linear objective functions and detailed analysis of operating conditions. This fuzzy logic is combined with machine learning algorithms such as neural networks and reinforcement learning to create an intelligent and flexible model that effectively adapts to sudden changes in dynamic environments. This model uses the combination of non-dominant fourth sorting genetic algorithms (NSGA-IV) and variable selection network (VSN) in a hybrid framework and provides an advanced and multi-faceted approach to solving complex multi-objective optimization problems. Pareto-optimal results obtained from this model indicate its efficient and optimal performance. The proposed model can be used as a practical and strategic source for managers and decision makers in optimizing production and improving customer satisfaction in uncertain and dynamic conditions.

کلیدواژه‌ها [English]

  • Multi-objective optimization
  • fuzzy logic
  • machine learning
  • hybrid multi-objective meta-heuristic algorithm
  1. Abdallah, M., Hamdan, S., & Shabib, A. (2021). A multi-objective optimization model for strategic waste management master plans. Journal of Cleaner Production284, 124714. https://doi.org/10.1016/j.jclepro.2020.124714
  2. Afzal, S., Shokri, A., Ziapour, B. M., Shakibi, H., & Sobhani, B. (2024). Building energy consumption prediction and optimization using different neural network-assisted models; comparison of different networks and optimization algorithms. Engineering Applications of Artificial Intelligence127, 107356. https://doi.org/10.1016/j.engappai.2023.107356
  3. Ala, A., Goli, A., Mirjalili, S., & Simic, V. (2024). A fuzzy multi-objective optimization model for sustainable healthcare supply chain network design. Applied Soft Computing150, 111012. https://doi.org/10.1016/j.asoc.2023.111012
  4. Alinezhad, M., Mahdavi, I., Hematian, M., & Tirkolaee, E. B. (2022). A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries. Environment, Development and Sustainability, 1-28. https://doi.org/10.1007/s10668-021-01809-y
  5. Ardanta, M. A., Fauzi, A., Patimah, P., Khadijah, F., Sihombing, Y. T., Hasan, F. S., & Rahmawati, D. (2024). Optimization of Business Decision Accuracy through the Application of Mathematical Economics. International Journal of Advanced Multidisciplinary, 2(4), 866-885. https://doi.org/10.38035/ijam.v2i4.447
  6. Azevedo, B. F., Rocha, A. M. A., & Pereira, A. I. (2024). Hybrid approaches to optimization and machine learning methods: a systematic literature review. Machine Learning, 1-43. https://doi.org/10.1007/s10994-023-06467-x
  7. Behera, I., & Sobhanayak, S. (2024). Task scheduling optimization in heterogeneous cloud computing environments: A hybrid GA-GWO approach. Journal of Parallel and Distributed Computing183, 104766. https://doi.org/10.1016/j.jpdc.2023.104766
  8. Chen, L., Fan, H., & Zhu, H. (2024). Multi-objective optimization of cancer treatment using the multi-objective gray wolf optimizer (MOGWO). Multiscale and Multidisciplinary Modeling, Experiments and Design7(3), 1857-1866. https://doi.org/10.1007/s41939-023-00307-0
  9. Duan, F., Eslami, M., Khajehzadeh, M., Basem, A., Jasim, D. J., & Palani, S. (2024). Optimization of a photovoltaic/wind/battery energy-based microgrid in distribution network using machine learning and fuzzy multi-objective improved Kepler optimizer algorithms. Scientific Reports14(1), 13354. https://doi.org/10.1038/s41598-024-64234-x
  10. Elfatih, N. M., Ali, E. S., & Saeed, R. A. (2023). Navigation and Trajectory Planning Techniques for Unmanned Aerial Vehicles Swarm. In Artificial Intelligence for Robotics and Autonomous Systems Applications(pp. 369-404). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-28715-2_12.
  11. Gargari, F. J., & Pourjavad, E. (2020, December). Supplier Selection and Order Allocation Under Disruption: Multi-Objective Evolutionary Algorithms. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 868-872. IEEE. 1109/IEEM45057.2020.9309949
  12. Guo, Z., & Wang, H. (2023). Implications on managing inventory systems for products with stock-dependent demand and nonlinear holding cost via the adaptive EOQ policy. Computers & Operations Research150, 106080. https://doi.org/10.1016/j.cor.2022.106080
  13. Hong, Y., Linton, O., McCabe, B., Sun, J., & Wang, S. (2024). Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach. Journal of Econometrics238(2), 105603. https://doi.org/10.1016/j.jeconom.2023.105603
  14. Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization techniques in training dnns: Methodology, analysis and application. IEEE transactions on pattern analysis and machine intelligence45(8), 10173-10196. 10.1109/TPAMI.2023.3250241
  15. Javadi Gargari, F., Saeidi-Mobarakeh, Z., & Amoozad Khalili, H. (2024). A Multi-objective Leagile Demand-Driven Optimization Model incorporating a Reliable Omnichannel Retailer: A Case Study. Journal of Industrial Engineering International2(2). https://sanad.iau.ir/Journal/jiei/Article/1105240
  16. Ifaei, P., Nazari-Heris, M., Charmchi, A. S. T., Asadi, S., & Yoo, C. (2023). Sustainable energies and machine learning: An organized review of recent applications and challenges. Energy266, 126432. https://doi.org/10.1016/j.energy.2022.126432
  17. Javadi Gargari, F., Sayad, M., Posht Mashhadi, S. A., Sadrnia, A., Nedjati, A., & Yousefi Golafshani, T. (2021). Five‐Echelon Multiobjective Health Services Supply Chain Modeling under Disruption. Mathematical Problems in Engineering2021(1), 5587392. https://doi.org/10.1155/2021/5587392
  18. Javadi Gargari, F., & Seifbarghy, M. (2020). Solving multi-objective supplier selection and quota allocation problem under disruption using a scenario-based approach. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva, 40(3), 78-89.. https://doi.org/10.30765/er.40.3.08
  19. Jiang, C., Xie, J., & Ye, T. (2024). Network structure guided multi-objective optimization approach for key entity identification. Applied Soft Computing, 151, 111115. https://doi.org/10.1016/j.asoc.2023.111115
  20. Kalita, K., Ramesh, J. V. N., Cepova, L., Pandya, S. B., Jangir, P., & Abualigah, L. (2024). Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems. Scientific reports14(1), 1816. https://doi.org/10.1038/s41598-024-52083-7
  21. Kaliyaperumal, P., & Das, A. (2022). A mathematical model for nonlinear optimization which attempts membership functions to address the uncertainties. Mathematics10(10), 1743. https://doi.org/10.3390/math10101743
  22. Khalili-Fard, A., Parsaee, S., Bakhshi, A., Yazdani, M., Aghsami, A., & Rabbani, M. (2024). Multi-objective optimization of closed-loop supply chains to achieve sustainable development goals in uncertain environments. Engineering Applications of Artificial Intelligence133, 108052. https://doi.org/10.1016/j.engappai.2024.108052
  23. Khan, A. S. (2022). Problem-Specific Heuristics for Diagnosability and Inventory Analysis in a Reconfigurable Manufacturing System. IEEE Access10, 70032-70052. 1109/ACCESS.2022.3187812
  24. Kristian, A., Goh, T. S., Ramadan, A., Erica, A., & Sihotang, S. V. (2024). Application of ai in optimizing energy and resource management: Effectiveness of deep learning models. International Transactions on Artificial Intelligence2(2), 99-105. https://doi.org/10.33050/italic.v2i2.530
  25. Kushartanto, A. I. (2024, February). Comparative Analysis Various Membership Functions Based on Neural Networks for Prediction of Students Graduation. In 2024 2nd International Conference on Software Engineering and Information Technology (ICoSEIT)(pp. 299-304). IEEE. 1109/ICoSEIT60086.2024.10497491
  26. Li, P., Xu, T., Wei, S., & Wang, Z. H. (2022). Multi-objective optimization of urban environmental system design using machine learning. Computers, Environment and Urban Systems94, 101796. https://doi.org/10.1016/j.compenvurbsys.2022.101796
  27. Li, X., Wang, Z., Yang, C., & Bozkurt, A. (2024). An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms. Energy296, 131259. https://doi.org/10.1016/j.energy.2024.131259
  28. Lorente-Leyva, L. L., Alemany, M. M. E., & Peluffo-Ordóñez, D. H. (2024). A conceptual framework for the operations planning of the textile supply chains: Insights for sustainable and smart planning in uncertain and dynamic contexts. Computers & Industrial Engineering187, 109824. https://doi.org/10.1016/j.cie.2023.109824
  29. Lorenz, R., Kraus, M., Wolf, H., Feuerriegel, S., & Netland, T. H. (2024). Selecting advanced analytics in manufacturing: a decision support model. Production Planning & Control35(7), 711-724. https://doi.org/10.1080/09537287.2022.2126951
  30. Most, T., & Will, J. (2024). Sensitivity analysis using the Metamodel of Optimal Prognosis. arXiv preprint arXiv:2408.03590. https://doi.org/10.48550/arXiv.2408.03590
  31. Mu'azu, M. A. (2023). Hybridized artificial neural network with metaheuristic algorithms for bearing capacity prediction. Ain Shams Engineering Journal14(5), 101980. https://doi.org/10.1016/j.asej.2022.101980
  32. Nadeem, A., Rizvi, A. A., & Noor, M. Y. (2024). Applying a Higher Number of Output Membership Functions to Enhance the Precision of a Fuzzy System. IEEE Transactions on Emerging Topics in Computational Intelligence. 1109/TETCI.2024.3425309
  33. Narang, D., Madaan, J., Chan, F. T., & Chungcharoen, E. (2024). Managing open loop water resource value chain through IoT focused decision and information integration (DII) modelling using fuzzy MCDM approach. Journal of Environmental Management, 350, 119609. https://doi.org/10.1016/j.jenvman.2023.119609
  34. Nili, M., Seyedhosseini, S. M., Jabalameli, M. S., & Dehghani, E. (2021). A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran. Renewable and sustainable energy reviews150, 111428. https://doi.org/10.1016/j.rser.2021.111428
  35. Nixon, M. P., Gloor, G. B., & Silverman, J. D. (2024). Beyond Normalization: Incorporating Scale Uncertainty in Microbiome and Gene Expression Analysis. Biorxiv. https://doi.org/10.1101/2024.04.01.587602
  36. Parhi, S. K., & Panigrahi, S. K. (2024). Alkali–silica reaction expansion prediction in concrete using hybrid metaheuristic optimized machine learning algorithms. Asian Journal of Civil Engineering25(1), 1091-1113. https://doi.org/10.1007/s42107-023-00799-8
  37. Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management. Logistics8(3), 73. https://doi.org/10.3390/logistics8030073
  38. Pokushko, M., Stupina, A., Medina-Bulo, I., Ezhemanskaya, S., Kuzmich, R., & Pokushko, R. (2023). Algorithm for Application of a Basic Model for the Data Envelopment Analysis Method in Technical Systems. Algorithms16(10), 460. https://doi.org/10.3390/a16100460
  39. Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review56(11), 13187-13257. https://doi.org/10.1007/s10462-023-10470-y
  40. Rashed, N. A., Ali, Y. H., Rashid, T. A., & Salih, A. (2024). Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems. arXiv preprint arXiv:2407.08754. https://doi.org/10.48550/arXiv.2407.08754
  41. Saha, C., Jana, D. K., & Duary, A. (2023). Enhancing production inventory management for imperfect items using fuzzy optimization strategies and Differential Evolution (DE) algorithms. Franklin Open5, 100051. https://doi.org/10.1016/j.fraope.2023.100051
  42. Sharma, V., Raj, A., & Chakraborty, A. (2023). Analysis of power dynamics in sustainable supply chain under non-linear demand setup. Operations Management Research16(1), 18-32. https://doi.org/10.1007/s12063-022-00268-6
  43. Song, Y., Wu, Y., Guo, Y., Yan, R., Suganthan, P. N., Zhang, Y., ... & Feng, Q. (2024). Reinforcement learning-assisted evolutionary algorithm: A survey and research opportunities. Swarm and Evolutionary Computation86, 101517. https://doi.org/10.1016/j.swevo.2024.101517
  44. Sotelo-Salas, C., Monardes-Concha, C. A., Pérez-Galarce, F., & Santa González, R. (2024). A multi-objective optimization model for planning emergency shelters after a tsunami. Socio-Economic Planning Sciences93, 101909. https://doi.org/10.1016/j.seps.2024.101909
  45. Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International journal of production economics116(1), 12-27. https://doi.org/10.1016/j.ijpe.2008.07.008
  46. Tavana, Madjid, Hosein Arman, Abdollah Hadi-Vencheh, and Sadegh Mansoori. "A fuzzy multi-objective optimization model for sustainable location planning using volumetric fuzzy sets." Annals of Operations Research(2023): 1-29. https://doi.org/10.1007/s10479-023-05505-0
  47. Wang, J., Qian, Y., Zhang, L., Wang, K., & Zhang, H. (2024). A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction. Energy Conversion and Management299, 117818. https://doi.org/10.1016/j.enconman.2023.117818
  48. Wang, Z., Pei, Y., & Li, J. (2023). A survey on search strategy of evolutionary multi-objective optimization algorithms. Applied Sciences13(7), 4643. https://doi.org/10.3390/app13074643
  49. Xin, X. Y., Ma, J., Liu, H. Q., Gu, Y. J., Wang, Y. F., & Cui, H. Z. (2023). A simple Pb-doping to achieve bonding evolution, VSn and resonant level shifting for regulating thermoelectric transport behavior of SnTe. Journal of Materials Science & Technology151, 66-72. https://doi.org/10.1016/j.jmst.2022.12.021
  50. Yan, M., Yuan, H., Xu, J., Yu, Y., & Jin, L. (2021). Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm. EURASIP Journal on Advances in Signal Processing2021, 1-23. https://doi.org/10.1186/s13634-021-00804-9
  51. Yousefzadeh, R., Kazemi, A., & Al-Maamari, R. S. (2024). Application of power-law committee machine to combine five machine learning algorithms for enhanced oil recovery screening. Scientific Reports, 14(1), 9200. https://doi.org/10.1038/s41598-024-59387-8
  52. Zhang, W., Xiao, G., Gen, M., Geng, H., Wang, X., Deng, M., & Zhang, G. (2024). Enhancing multi-objective evolutionary algorithms with machine learning for scheduling problems: recent advances and survey. Frontiers in Industrial Engineering2, 1337174. https://doi.org/10.3389/fieng.2024.1337174
  53. Zhu, Z., Li, X., Chen, H., Zhou, X., & Deng, W. (2024). An effective and robust genetic algorithm with hybrid multi-strategy and mechanism for airport gate allocation. Information Sciences654, 119892. https://doi.org/10.1016/j.ins.2023.119892
  54. Zou, F., Yen, G. G., Tang, L., & Wang, C. (2021). A reinforcement learning approach for dynamic multi-objective optimization. Information Sciences546, 815-834. https://doi.org/10.1016/j.ins.2020.08.101
CAPTCHA Image