Path Planning For A Mobile Robot Using The Chessboard Method And Gray Wolf Optimization Algorithm In Static And Dynamic Environments

Document Type : Original Article

Authors

1 Msc Student of Qom University of Technology, Faculty of Electrical and computer engineering. Email: ali.hatami72@yahoo.com

2 Assistant Professor of Qom University of Technology, Faculty of Electrical and computer engineering. Email: sharifi@qut.ac.ir

3 Assistant Professor of Qom University of Technology, Faculty of Electrical and Computer Engineering. Email: yadegar@qut.ac.ir

Abstract

The Grey Wolf Optimization (GWO) algorithm, a computational optimization method inspired by the social behavior of wolves, has recently been effectively used to solve optimization and routing problems. This paper proposes a metaheuristic approach named Grey Wolf Optimization (GWO) inspired by grey wolves. Four types of grey wolves, namely alpha, beta, delta, and omega, are employed to simulate the leadership hierarchy. Additionally, three main stages of hunting—searching for prey, encircling prey, and attacking prey—are implemented. Overall, this paper examines how the combination of the chessboard method and the Grey Wolf Optimization algorithm can optimize the path planning of a mobile robot in both static and dynamic environments. The objective of this research is to shorten the path, minimize the final position to the target, avoid collisions, and prevent local minima. This paper investigates the Grey Wolf Optimization algorithm as an effective method for solving the routing problem. Simulation results demonstrate that using this algorithm leads to significant improvements in the robot's efficiency and enhanced path-planning performance in complex and dynamic environments

Keywords

Main Subjects


  1. Collan and J. Kacprzyk, Soft computing applications for group decision-making and consensus modeling. Springer, 2018. Https://doi.org/ 10.1007/978-3-319-60207-3
  2. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, "Path planning and trajectory planning algorithms: A general overview," Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, pp. 3-27, 2015. Https://doi.org/ 10.1007/978-3-319-14705-5_1
  3. Hewawasam, M. Y. Ibrahim, and G. K. Appuhamillage, "Past, present and future of path-planning algorithms for mobile robot navigation in dynamic environments," IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 353-365, 2022. Https://doi.org/ 10.1109/OJIES.2022.3179617
  4. Liu, W. Zhu, and J. Ni, "Path planning and obstacle avoidance method for automobile vehicle based on improved artificial potential field," Science Technology and Engineering, vol. 17, no. 16, p. 6, 2017.
  5. Song, Z. Wang, and L. Sheng, "A new genetic algorithm approach to smooth path planning for mobile robots," Assembly Automation, vol. 36, no. 2, pp. 138-145, 2016. https://doi.org/10.1108/AA-11-2015-094
  6. Zeng, H. Zhang, Y. Chen, B. Chen, and Y. Liu, "Path planning for intelligent robot based on switching local evolutionary PSO algorithm," Assembly Automation, vol. 36, no. 2, pp. 120-126, 2016. https://doi.org/10.1108/AA-10-2015-079
  7. P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, and P. Melin, "Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation," Applied Soft Computing, vol. 9, no. 3, pp. 1102-1110, 2009. https://doi.org/10.1016/j.asoc.2009.02.014
  8. Wang, L. Yang, Y. Zhang, and S. Meng, "Robot path planning based on improved ant colony algorithm with potential field heuristic," Control and decision, vol. 33, no. 10, pp. 1775-1781, 2018. Https://doi.org/ 10.1109/WRC-SARA.2018.8584217
  9. Victerpaul, D. Saravanan, S. Janakiraman, and J. Pradeep, "Path planning of autonomous mobile robots: A survey and comparison," Journal of Advanced Research in Dynamical and Control Systems, vol. 9, no. 12, pp. 1535-1565, 2017.
  10. Wang, S. Chen, Y. Zhang, and L. Liu, "Path planning of mobile robot in dynamic environment: Fuzzy artificial potential field and extensible neural network," Artificial Life and Robotics, vol. 26, pp. 129-139, 2021. https://doi.org/10.1007/s10015-020-00630-6
  11. He, Y. Su, X. Fan, Z. Liu, and B. Wang, "Dynamic path planning of mobile robot based on artificial potential field," in 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020: IEEE, pp. 259-264. https://doi.org/ 10.1109/ICHCI51889.2020.00063
  12. H. Holland, "Genetic algorithms," Scientific american, vol. 267, no. 1, pp. 66-73, 1992.
  13. Goldberg, "Genetic algorithms in optimization, search and machine learning," in Introduction to Evolutionary Computing: Addison Wesley, 2003. https://doi.org/ 10.1038/scientificamerican0792-66
  14. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997. https://doi.org/10.1023/A:1008202821328
  15. B. Fogel, Artificial intelligence through simulated evolution. Wiley-IEEE Press, 1998. https://doi.org/ 10.1109/9780470544600.ch7
  16. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82-102, 1999. https://doi.org/ 10.1109/4235.771163
  17. Hansen, S. D. Müller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary computation, vol. 11, no. 1, pp. 1-18, 2003. https://doi.org/ 10.1162/106365603321828970
  18. Simon, "Biogeography-based optimization," IEEE transactions on evolutionary computation, vol. 12, no. 6, pp. 702-713, 2008. https://doi.org/ 10.1109/TEVC.2008.919004
  19. N. Makhadmeh et al., "Recent advances in Grey Wolf Optimizer, its versions and applications," IEEE Access, 2023. https://doi.org/ 10.1109/ACCESS.2023.3304889
  20. D. Mech, "Alpha status, dominance, and division of labor in wolf packs," Canadian journal of zoology, vol. 77, no. 8, pp. 1196-1203, 1999. https://doi.org/10.1139/z99-099
  21. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in engineering software, vol. 69, pp. 46-61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.007
  22. C. Muro, R. Escobedo, L. Spector, and R. Coppinger, "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations," Behavioural processes, vol. 88, no. 3, pp. 192-197, 2011. https://doi.org/10.1016/j.beproc.2011.09.006
  23. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, "Path planning techniques for mobile robots: Review and prospect," Expert Systems with Applications, p. 120254, 2023.https://doi.org/10.1016/j.eswa.2023.120254
CAPTCHA Image