[1] M. Collan and J. Kacprzyk, Soft computing applications for group decision-making and consensus modeling. Springer, 2018. Https://doi.org/ 10.1007/978-3-319-60207-3
[2] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, "Path planning and trajectory planning algorithms: A general overview," Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, pp. 3-27, 2015. Https://doi.org/ 10.1007/978-3-319-14705-5_1
[3] H. Hewawasam, M. Y. Ibrahim, and G. K. Appuhamillage, "Past, present and future of path-planning algorithms for mobile robot navigation in dynamic environments," IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 353-365, 2022. Https://doi.org/
10.1109/OJIES.2022.3179617
[4] Z. Liu, W. Zhu, and J. Ni, "Path planning and obstacle avoidance method for automobile vehicle based on improved artificial potential field," Science Technology and Engineering, vol. 17, no. 16, p. 6, 2017.
[5] B. Song, Z. Wang, and L. Sheng, "A new genetic algorithm approach to smooth path planning for mobile robots," Assembly Automation, vol. 36, no. 2, pp. 138-145, 2016.
https://doi.org/10.1108/AA-11-2015-094
[6] N. Zeng, H. Zhang, Y. Chen, B. Chen, and Y. Liu, "Path planning for intelligent robot based on switching local evolutionary PSO algorithm," Assembly Automation, vol. 36, no. 2, pp. 120-126, 2016.
https://doi.org/10.1108/AA-10-2015-079
[7] M. P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, and P. Melin, "Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation," Applied Soft Computing, vol. 9, no. 3, pp. 1102-1110, 2009.
https://doi.org/10.1016/j.asoc.2009.02.014
[8] X. Wang, L. Yang, Y. Zhang, and S. Meng, "Robot path planning based on improved ant colony algorithm with potential field heuristic," Control and decision, vol. 33, no. 10, pp. 1775-1781, 2018. Https://doi.org/
10.1109/WRC-SARA.2018.8584217
[9] P. Victerpaul, D. Saravanan, S. Janakiraman, and J. Pradeep, "Path planning of autonomous mobile robots: A survey and comparison," Journal of Advanced Research in Dynamical and Control Systems, vol. 9, no. 12, pp. 1535-1565, 2017.
[10] D. Wang, S. Chen, Y. Zhang, and L. Liu, "Path planning of mobile robot in dynamic environment: Fuzzy artificial potential field and extensible neural network," Artificial Life and Robotics, vol. 26, pp. 129-139, 2021. https://doi.org/10.1007/s10015-020-00630-6
[11] N. He, Y. Su, X. Fan, Z. Liu, and B. Wang, "Dynamic path planning of mobile robot based on artificial potential field," in 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020: IEEE, pp. 259-264. https://doi.org/
10.1109/ICHCI51889.2020.00063
[12] J. H. Holland, "Genetic algorithms," Scientific american, vol. 267, no. 1, pp. 66-73, 1992.
[13] D. Goldberg, "Genetic algorithms in optimization, search and machine learning," in Introduction to Evolutionary Computing: Addison Wesley, 2003. https://doi.org/ 10.1038/scientificamerican0792-66
[14] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997. https://doi.org/10.1023/A:1008202821328
[15] D. B. Fogel, Artificial intelligence through simulated evolution. Wiley-IEEE Press, 1998. https://doi.org/
10.1109/9780470544600.ch7
[16] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82-102, 1999. https://doi.org/
10.1109/4235.771163
[17] N. Hansen, S. D. Müller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary computation, vol. 11, no. 1, pp. 1-18, 2003. https://doi.org/
10.1162/106365603321828970
[18] D. Simon, "Biogeography-based optimization," IEEE transactions on evolutionary computation, vol. 12, no. 6, pp. 702-713, 2008. https://doi.org/
10.1109/TEVC.2008.919004
[19] S. N. Makhadmeh et al., "Recent advances in Grey Wolf Optimizer, its versions and applications," IEEE Access, 2023. https://doi.org/
10.1109/ACCESS.2023.3304889
[20] L. D. Mech, "Alpha status, dominance, and division of labor in wolf packs," Canadian journal of zoology, vol. 77, no. 8, pp. 1196-1203, 1999.
https://doi.org/10.1139/z99-099
[22] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations," Behavioural processes, vol. 88, no. 3, pp. 192-197, 2011. https://doi.org/10.1016/j.beproc.2011.09.006
[23] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, "Path planning techniques for mobile robots: Review and prospect," Expert Systems with Applications, p. 120254, 2023.
https://doi.org/10.1016/j.eswa.2023.120254
ارسال نظر در مورد این مقاله