نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی کارشناسیارشد، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران، رایانامه: ali.hatami72@yahoo.com
2 استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران، رایانامه: sharifi@qut.ac.ir
3 استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران، رایانامه: yadegar@qut.ac.ir
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
The Grey Wolf Optimization (GWO) algorithm, a computational optimization method inspired by the social behavior of wolves, has recently been effectively used to solve optimization and routing problems. This paper proposes a metaheuristic approach named Grey Wolf Optimization (GWO) inspired by grey wolves. Four types of grey wolves, namely alpha, beta, delta, and omega, are employed to simulate the leadership hierarchy. Additionally, three main stages of hunting—searching for prey, encircling prey, and attacking prey—are implemented. Overall, this paper examines how the combination of the chessboard method and the Grey Wolf Optimization algorithm can optimize the path planning of a mobile robot in both static and dynamic environments. The objective of this research is to shorten the path, minimize the final position to the target, avoid collisions, and prevent local minima. This paper investigates the Grey Wolf Optimization algorithm as an effective method for solving the routing problem. Simulation results demonstrate that using this algorithm leads to significant improvements in the robot's efficiency and enhanced path-planning performance in complex and dynamic environments
کلیدواژهها [English]
ارسال نظر در مورد این مقاله