Alfonso-Sánchez, S., Solano, J., Correa-Bahnsen, A., Sendova, K. P., & Bravo, C. (2024). Optimizing credit limit adjustments under adversarial goals using reinforcement learning. European Journal of Operational Research, 315(2), 802-817.
https://doi.org/10.1016/j.ejor.2023.12.025
Chen, L., & Gao, Q. (2019). Application of deep reinforcement learning on automated stock trading. In Proceedings of the 10th International Conference on Software Engineering and Service Science (ICSESS), 29-33.
https://doi.org/10.1109/ICSESS47205.2019.9040728
Du, X., Zhai, J., & Lv, K. (2009). Algorithm trading using q-learning and recurrent reinforcement learning. Stanford University, 1-7
Duerson, S., Khan, F., Kovalev, V., & Malik, A. H. (2005). Reinforcement learning in online stock trading systems. Georgia Institute of Technology.
Gao, X., & Chan, L. (2000). An Algorithm for Trading and Portfolio Management Using Q-learning and Sharpe Ratio Maximization. In Proceedings of the 7th International Conference On Neural Information Processing (ICONIP 2000), 832-837.
Graesser, L., & Keng, W. L. (2019). Foundations of Deep Reinforcement Learning: Theory and Practice in Python. Addison-Wesley Professional.
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv, 1-14.
https://doi.org/10.48550/arXiv.1801.01290
Jin, O., & El-Saawy, H. (2016). Portfolio management using reinforcement learning. Stanford University, 1-6.
Kingma, D., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), 1-15.
https://doi.org/10.48550/arXiv.1412.6980
Liang, Z., Chen, H., Zhu, J., Jiang, K., & Li, Y. (2018). Adversarial deep reinforcement learning in portfolio management. arXiv, 1-11.
https://doi.org/10.48550/arXiv.1808.09940
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2019). Continuous control with deep reinforcement learning. arXiv, 1-14.
https://doi.org/10.48550/arXiv.1509.02971
Markowitz, H. M. (1991). Portfolio Selection: Efficient Diversification of Investments, 2nd Edition. New York: Wily.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv, 1-9.
https://doi.org/10.48550/arXiv.1312.5602
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529–533.
https://doi.org/10.1038/nature14236
Ngo, V. M., Nguyen, H. H., & Van Nguyen, P. (2023). Does reinforcement learning outperform deep learning and traditional portfolio optimization models in frontier and developed financial markets?. Research in International Business and Finance, 65, 101936.
https://doi.org/10.1016/j.ribaf.2023.101936
Poole, D. L., & Mackworth, A. K. (2023). Artificial Intelligence: Foundations of Computational Agents, 3rd edition. Cambridge: Cambridge University Press.
https://doi.org/10.1017/9781009258227
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv, 1-12.
https://doi.org/10.48550/arXiv.1707.06347
Soleymani, F., & Paquet, E. (2021). Deep graph convolutional reinforcement learning for financial portfolio management – DeepPocket. Expert Systems with Applications, 182, 115-127.
https://doi.org/10.1016/j.eswa.2021.115127
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction, Second edition. Cambridge: MIT press.
Tolouie Eshlaghy, A., & Haghdoust, S. (2007). Modelling of Prediction Stock Price by Using Neural Networks and Compare it with Mathematical Prediction Methods. Economics Research, 7(25), 237-251. (In Persian)
van Otterlo, M., & Wiering, M. (2012). Reinforcement Learning and Markov Decision Processes. In: Wiering, M., van Otterlo, M. (eds) Reinforcement Learning. Adaptation, Learning, and Optimization, vol 12. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-27645-3_1
Varga, B., Kulcsár, B., & Chehreghani, M. H. (2023). Deep Q-learning: A robust control approach. International Journal of Robust and Nonlinear Control, 33(1), 526-544.
https://doi.org/10.1002/rnc.6457
Vergara, G., & Kristjanpoller, W. (2024). Deep reinforcement learning applied to statistical arbitrage investment strategy on cryptomarket. Applied Soft Computing, 153, 111255.
https://doi.org/10.1016/j.asoc.2024.111255
Wang, Y., Wang, D., Zhang, S., Feng, Y., Li, S., & Zhou, Q. (2017). Deep Q-trading. Technical Report-20160036. Center for Speech and Language Technologies (CSLT), Tsinghua University, 1-9.
Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2016). Dueling Network Architectures for Deep Reinforcement Learning. arXiv, 1-15.
https://doi.org/10.48550/arXiv.1511.06581
Xiong, Z., Liu, X.-Y., Zhong, S., Yang, H., & Walid, A. (2022). Practical deep reinforcement learning approach for stock trading. arXiv, 1-7.
https://doi.org/10.48550/arXiv.1811.07522
Ye, Y., Pei, H., Wang, B., Chen, P.-Y., Zhu, Y., Xiao, J., & Li, B. (2020). Reinforcement-Learning Based Portfolio Management with Augmented Asset Movement Prediction States. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 34(01), 1112-1119.
https://doi.org/10.1609/aaai.v34i01.5462
Send comment about this article