[1] J. Wu, S. Pan, X. Zhu, C. Zhang, and S. Y. Philip, (2018). “Multiple structure-view learning for graph classification,” IEEE Trans. Neural New. Learn. Syst., vol. 29, no. 7, pp. 3236–3251. https://doi.org/10.1109/TNNLS.2017.2703832
[2] Mikko Kivela, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A Porter. (2014). Multilayer networks. Journal of complex networks, 2(3):203-271.
https://doi.org/10.1093/comnet/cnu016
[3] Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. (2017). Ensemble-based community detection in multilayer networks. Data Mining and Knowledge Discovery, 31(5): 1506-1543. https://doi.org/10.1007/s10618-017-0528-8.
[4] MA. Rodriguez and J. Shinavier. (2010). “Exposing multi-relational networks to single-relational network analysis algorithms,”
Journal of Informetrics. vol.4, no.1, pp.29-41.
https://doi.org/10.1016/j.joi.2009.06.004
[5] A. A. Amini, A.Chen, P. J. Bickel, and E. Levina, (2013). "Pseudo-likelihood methods for community detection in large sparse networks," Ann. Statist., vol. 41, no. 4, pp. 2097-2122.
https://doi.org/10.1016/j.patcog.2024.110487.
[9] H. Xu, W. Xia, Q. Gao, J. Han, and X. Gao, (2021). “Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution,” Neural New., vol. 142, pp. 221–230. https:// doi.org./
10.3390/math12050697
[10] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, (2020). “Multi-view attribute graph convolution networks for clustering,” in Proc. IJCAI, pp. 2973–2979.
https://doi.org/10.1049/cvi2.12299
[12] F. D. Malliaros and M. Vazirgiannis, (2013). “Clustering and community detection in directed networks: A survey,” Phys. Rep.-Rev. Sec. Phys. Lett., vol. 533, no. 4, pp.95-142.
https://doi.org/10.1016/j.physa.2024.130036
[13] L. Tang, X. Wang and H. Liu, (2012). “Community detection via heterogeneous interaction analysis,” Data mining and knowledge discovery, vol. 25, no. 1, pp.1-33. DOI:
10.1007/s10618-020-00716-6
[14] B. Boden, S. Günnemann, H. Hoffmann and T. Seidl, editors, (2012). “Mining coherent subgraphs in multi-layer graphs with edge labels,”
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '12). Association for Computing Machinery, New York, NY, USA. pp. 1258–1266.
https://doi.org/10.1007/s10618-014-0365-y
[15] A. Tagarelli, A. Amelio and F. Gullo. (2017). “Ensemble-based community detection in multilayer networks,”
Data Mining and Knowledge Discovery, vol. 31, no. 5, pp. 1506-1543.
https://doi.org/10.1016/j.procs.2022.11.002
[16] D. Cai, Z. Shao, X. He, X. Yan and J. Han, (2005). “Community mining from multi-relational networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 445-452. https://doi.org/10.1007/11564126-44.
[17] G. Braun, H. Tyagi, C. Biernacki and editors, (2021). “Clustering multilayer graphs with missing nodes,”
International Conference on Artificial Intelligence and Statistics, PMLR 130, pp. 2260-2268.
https://doi.org/10.1007/s10618-012-0272-z
[18] MA. Rodriguez and J. Shinavier, (2010).“Exposing multi-relational networks to single-relational network analysis algorithms,”
Journal of Informetrics. vol.4, no.1, pp.29-41.
https://doi.org/10.1016/j.joi.2009.06.004
[19] L. Tang, X. Wang and H. Liu, (2012). “Community detection via heterogeneous interaction analysis,” Data mining and knowledge discovery, vol. 25, no. 1, pp. 1-33. DOI:
10.1007/s10618-020-00716-6
[20] X. Liu, W. Liu, T. Murata and K. Wakita, (2014). “A framework for community detection in heterogeneous multi-relational networks,” Advances in Complex Systems, vol.17, no. 6, pp. 145-148. DOI:
10.1016/j.procs.2019.09.184
[21] S. Pramanik, R. Tackx, A. Navelkar, J-L. Guillaume and B. Mitra, (2017). “Discovering community structure in multilayer networks.”
2017 IEEE International Conference on Data Science and Advanced Analytics(DSAA), IEEE, pp. 611–620. DOI:
10.3390/sym15071368
[22] A. Amelio, C. Pizzuti and editors, (2014). “Community detection in multidimensional networks,”
In International Conference on Parallel Problem Solving from Nature, Springer, pp. 222–232.
DOI: 10.1109/ICTAI.2014.60
[23] FR. Khawaja, J. Sheng, B. Wang and Y. Memon, (2021). “Uncovering Hidden Community Structure in Multi-Layer Networks,”
Applied Sciences, vol.11, no.6, pp. 28-57. DOI:
10.3390/app11062857
[25] L. Tang, X. Wang, H. Liu, editors, (2009). “Uncoverning groups via heterogeneous interaction analysis”, 2009
Ninth IEEE International Conference on Data Mining, pp. 503-512.
https://doi.org/10.1007/s11257-023-09359-w
[26] X. Dong, P. Frossard, P. Vandergheynst and N. Nefedov, (2012). “Clustering with multi-layer graphs: A spectral perspective,”
IEEE Transactions on Signal Processing, vol.60, no. 11, pp.5820-5831.
https://doi.org/10.1109/TSP.2012.2212886
[27] A. Trokicić and B. Todorović, (2019). “Constrained spectral clustering via multi-layer graph embeddings on a Grassmann manifold,”
International Journal of Applied Mathematics and Computer Science, vol. 29, no. 1, pp.125-137. DOI:
10.2478/amcs-2019-0010
[28] Al-Sharoa, E. M., & Aviyente, S. (2022). Community detection in fully-connected multi-layer networks through joint nonnegative matrix factorization. IEEE Access, 10, 43022-43043, DOI: 10.1109/ACCESS.2022.3168659
[29] T. Valles-Catala, FA. Massucci, R. Guimera and M. Sales-Pardo, (2016). “Multilayer stochastic block models reveal the multilayer structure of complex networks,”
Physical Review, vol.6, no. 1, pp. 2546-2580.
https://doi.org/10.1103/PhysRevX.6.011036.
[30] H. T. Ali, S. Liu, Y. Yilmaz, R. Couillet, I. Rajapakse and A. Hero, (2019). “Latent heterogeneous multilayer community detection,”
In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 8142–8146.
https://doi.org/10.48550/arXiv.1806.07963
[31] D. Zhou, CJ. Burges and editors, (2007). “Spectral clustering and transductive learning with multiple views,”
In Proceedings of the 24th international conference on Machine learning, pp. 1159–1166.
https://doi.org/10.1145/1273496.1273642
[32] X. Li, G. Xu and M. Tang, (2018). “Community detection for multi-layer social network based on local random walk,”
Journal of Visual Communication and Image Representation, vol. 57, pp. 91-98.
https://doi.org/10.1016/j.jvcir.2018.10.003
[34] M. Contisciani, EA. Power and C. De Bacco, (2020). “Community detection with node attributes in multilayer networks,”
Scientific reports, vol. 10, no. 1, pp. 1-16.
https://doi.org/10.48550/arXiv.2004.09160
[35] D. Luo, Y. Bian, Y. Yan, X. Liu, J. Huan, X. Zhang and editors, (2020). “Local community detection in multiple networks,”
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, Association for Computing Machinery, New York, NY, USA, pp. 266–274.
https://doi.org/10.1145/3644078
[36] Qing, H. (2024). Community detection in multi-layer bipartite networks. arXiv preprint arXiv:2405.04711. https://doi.org/10.48550/arXiv.2405.04711
[37] Zhen, Y., Xu, S., & Wang, J. (2024). Consistent community detection in multi-layer networks with heterogeneous differential privacy. arXiv preprint arXiv:2406.14772. https://doi.org/10.48550/arXiv.2406.14772
[38] Qing, H. (2024). Discovering overlapping communities in multi-layer directed networks. arXiv preprint arXiv:2407.16152. https://doi.org/ 10.48550/ arXiv.2407.16152
[39] Al-sharoa, E., & Aviyente, S. (2023). A Unified Spectral Clustering Approach for Detecting Community Structure in Multilayer Networks. Symmetry, 15(7), 1368.
https://doi.org/10.3390/sym15071368
[40] P. Bródka, T. Filipowski, P. Kazienko and editors, (2011). “An introduction to community detection in multi-layered social network,”
In World Summit on Knowledge Society, Springer, pp. 185–190. DOI:
10.1007/978-3-642-35879-1_23
[41] M. Hmimida and R. Kanawati, (2015). “Community detection in multiplex networks: A seed-centric approach,”
Networks & Heterogeneous Media, vol. 10, no. 1, pp. 71-85. DOI:
10.3934/nhm.2015.10.71
[42] MR. Shahmoradi, M. Ebrahimi, Z. Heshmati and M. Salehi, (2019). “Multilayer overlapping community detection using multi-objective optimization,”
Future Generation Computer Systems, vol. 101, pp. 221-235.
https://doi.org/10.1016/j.future.2019.05.061
[43] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, (2017). “MGAE: marginalized graph autoencoder for graph clustering,” in Proceedings of CIKM, pp. 889–898.
https://doi.org/10.1145/3132847.3132967
[44] B. Sun, H. Shen, J. Gao, W. Ouyang, and X. Cheng, (2017). “A non-negative symmetric encoder-decoder approach for community detection,” in Proceedings of CIKM, pp. 597–606.
https://doi.org/10.1145/3132847.3132902
[46] Y. Zhang, Y. Xiong, Y. Ye, T. Liu, W. Wang, Y. Zhu, and P. S. Yu, (2020). “SEAL: learning heuristics for community detection with generative adversarial networks,” in Proceedings of SIGKDD, pp. 1103-1113.
https://doi.org/10.1145/3394486.3403154
[48] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, (2008). “Mixed membership stochastic block models,” J. Mach. Learn. Res., vol. 9, pp. 1981-2014.
https://doi.org/10.1145/3539618.3591675
[50] A. A. Amini, A.Chen, P. J. Bickel, and E. Levina, (2013). "Pseudo-likelihood methods for community detection in large sparse networks," Ann. Statist., vol. 41, no. 4, pp. 2097-2122.
https://doi.org/10.1214/13-AOS1138
[54] F. Sun, M. Qu, J. Hoffmann, C. Huang, and J. Tang, (2019). “v Graph: A generative model for joint community detection and node representation learning,” in Proceedings of NeurIPS, pp. 512-522. https://doi.org/10.48550/arXiv.1906.07159
[55] S. Cavallari, V. W. Zheng, H. Cai, K. C. Chang, and E. Cambria, (2017). “Learning community embedding with community detection and node embedding on graphs,” in Proceedings of CIKM, pp. 377-386.
https://doi.org/10.1016/j.ifacol.2021.04.226
[56] Z. He, J. Liu, Y. Zeng, L. Wei, and Y. Huang, (2021). “Content to node: Self-translation network embedding,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 431-443.
https://doi.org/10.1109/TKDE.2019.2932388
[57] M. K. Rahman and A. Azad, (2019). “Evaluating the community structures from network images using neural networks,” in Proceedings of Complex Networks and Their Applications, vol. 881, pp. 866-878. DOI:
10.1007/978-3-030-36687-2_72
[59] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang, (2016). “Modularity based community detection with deep learning,” in Proceedings of IJCAI, pp. 2252–2258. DOI:
10.3390/app112311447
[60] J. Cao, D. Jin, and J. Dang, (2018). “Autoencoder based community detection with adaptive integration of network topology and node contents,” in Proceedings of KSEM, vol. 11062, pp. 184–196. DOI:
10.1007/978-3-319-99247-1_16
[61] V. Bhatia and R. Rani, (2019). “A distributed overlapping community detection model for large graphs using autoencoder,” Future Gener. Compute. Syst., vol. 94, pp. 16–26.
https://doi.org/10.1016/j.future.2018.10.045
[62] Y. Xie, X. Wang, D. Jiang, and R. Xu, (2019). “High-performance com-munity detection in social networks using a deep transitive autoencoder,” Inf. Sci., vol. 493, pp. 75–90. DOI:
10.1016/j.ins.2019.04.018
[63] J. Cao, D. Jin, and J. Dang, (2018). “Autoencoder based community detection with adaptive integration of network topology and node contents,” in Proceedings of KSEM, vol. 11062, pp. 184–196. dOI:
10.1007/978-3-319-99247-1_16
[64] J. Di, G. Meng, L. Zhixuan, L. Wenhuan, H. Dongxiao, and F. Fogelman-Soulie, (2017). “Using deep learning for community discov-ery in social networks,” in Proceedings of ICTAI, pp. 160–167. DOI:
10.1109/ICTAI.2017.00035
[65] H. Sun, F. He, J. Huang, Y. Sun, Y. Li, C. Wang, L. He, Z. Sun, and X. Jia, (2020). “Network embedding for community detection in attributed networks,” ACM Trans. Knowl. Discov. Data, vol. 14, no. 3, pp. 1–25.
https://doi.org/10.1145/3385415
[66] F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu, (2014). “Learning deep representations for graph clustering,” in Proceedings of AAAI, pp. 1293–1299. DOI:
10.1609/aaai.v28i1.8916
[68] R. Xu, Y. Che, X. Wang, J. Hu, and Y. Xie, (2020). “Stacked autoencoder-based community detection method via an ensemble clustering framework,” Inf. Sci., vol. 526, pp. 151–165.
https://doi.org/10.1007/s11227-022-04767-y
[69] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, (2017). “MGAE: marginal-ized graph autoencoder for graph clustering,” in Proceedings of CIKM, pp. 889–898.
https://doi.org/10.1145/3132847.3132967
[71] Wu, Y., Fu, Y., Xu, J., Yin, H., Zhou, Q., & Liu, D. (2023). Heterogeneous question answering community detection based on graph neural network. Information Sciences, 621, 652-671.
https://doi.org/10.1016/j.ins.2022.10.126
[72] Cai, X., & Wang, B. (2023). A graph convolutional fusion model for community detection in multiplex networks. Data Mining and Knowledge Discovery, 37(4), 1518-1547.
https://doi.org/10.1007/s10618-023-00932-w
[73] Liu, X., Wu, Y., Fiumara, G., & De Meo, P. (2024). Heterogeneous graph community detection method based on K-nearest neighbor graph neural network. Intelligent Data Analysis, (Preprint), 1-22.
https://doi.org/10.3233/IDA-230356
[75] Kumar, S., Mallik, A. & Sengar, S.S. Community detection in complex networks using stacked autoencoders and crow search algorithm. J Supercomput 79, 3329–3356 (2023). https://doi.org/10.1007/s11227-022-04767-y
[76] D. He, L. Zhai, Z. Li, D. Jin, L. Yang, Y. Huang, and P. S. Yu, (2020). “Ad-versarial mutual information learning for network embedding,” in Proceedings of IJCAI, pp. 3321-3327.
https://doi.org/10.24963/ijcai.2020/459
[78] Molnár, B., Márton, IB., Horvát, S. et al. Community detection in directed weighted networks using Voronoi partitioning. Sci Rep 14, 8124 (2024). https://doi.org/10.1038/ s41598-024-58624-4
[79] H. Kautz, B. Selman and M. Shah, (1997). “Referral Web: combining social networks and collaborative filtering,” Communications of the ACM, vol. 40, no. 3, pp. 63-65. DOI:
10.1145/245108.245123
[81] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, (2018). “Adversarially regularized graph autoencoder for graph embedding,” in Proc. IJCAI, pp. 2609–2615.
https://doi.org/10.48550/arXiv.1802.04407
[83] R. Mastrandrea, J. Fournet, and A. Barrat, (2015). “Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys,” PLoS ONE, vol. 10, no. 9, Art. no. e0136497. DOI:
10.1371/journal.pone.0136497
[84] S. Pramanik, R. Tackx, A. Navelkar, J-L. Guillaume and B. Mitra, (2017). “Discovering community structure in multilayer networks.”
2017 IEEE International Conference on Data Science and Advanced Analytics(DSAA), IEEE, pp. 611–620. DOI:
10.1109/DSAA.2017.71
[85] A. Amelio, C. Pizzuti and editors, (2014). “Community detection in multidimensional networks,”
In International Conference on Parallel Problem Solving from Nature, Springer, pp. 222–232. DOI:
10.1109/ICTAI.2014.60
[86] M. Hmimida and R. Kanawati, (2015). “Community detection in multiplex networks: A seed-centric approach,”
Networks & Heterogeneous Media, vol. 10, no. 1, pp. 71-85.
https://doi.org/10.1016/j.eswa.2020.113184
[87] A. Tagarelli, A. Amelio and F. Gullo, (2017). “Ensemble-based community detection in multilayer networks,”
Data Mining and Knowledge Discovery, vol. 31, no. 5, pp. 1506-1543.
https://doi.org/10.1016/j.procs.2022.11.002
[89] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, (2020). “Beyond homophily in graph neural networks: Current limitations and effective designs,” in Proc. NIPS.
https://doi.org/10.1016/j.spasta.2024.100822
[91] R. Mastrandrea, J. Fournet, and A. Barrat, (2015). “Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys,” PLoS ONE, vol. 10, no. 9, Art. no. e0136497.
https://doi.org/10.1016/j.procs.2023.10.274
[92] P. Massa and P. Avesani, (2005).“Controversial users demand local trust metrics: An experimental study on Epinions. com community,” in Proc. AAAI, vol. 5, pp. 121–126. DOI:
10.1007/978-3-642-13446-3_16
[93] J. Leskovec, D. Huttenlocher, and J. Kleinberg, (2010). “Governance in social media: A case study of the Wikipedia promotion process,” in Proc. ICWSM, no. 1.
https://doi.org/10.1145/2124295.2124378
[95] X. Shen and F.-L. Chung, (2020). “Deep network embedding for graph repre-sentation learning in signed networks,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1556–1568. DOI:
10.1109/TCYB.2018.2871503
Send comment about this article