review community detection algorithms in multilayer networks; Traditional methods and deep learning

Document Type : Original Article

Authors

1 Department of Computer Engineering, National University of Skills (NUS), Tehran ,

2 Professor, Department of Industrial Engineering, University if Qom, Qom, Iran. Email: j.rezaee@qom.ac.ir

Abstract

A community in networks is usually considered as a group of nodes that are more connected among their members than other members of the network. community detection algorithms are fundamental tools that allow us to discover organizational principles in networks. Today, with the ever-increasing growth of data and the complexity of their structure, data are modeled as multilayer networks. community detection in multilayer networks is one of the key issues in the field of data processing. In this research, more than 50 community detection algorithms multilayer networks have been investigated. We have examined these methods in two main categories: traditional methods and deep learning methods. After a complete review of the methods, according to their advantages and disadvantages, the main challenges in this field have been identified. community detection in directed multilayer networks, finding overlapping communities in dynamic networks and providing scalable algorithms have been among the most important challenges identified in this field. According to these challenges, suggestions have been made to develop methods to overcome the disadvantages of the current algorithms.

Keywords

Main Subjects


[1] J. Wu, S. Pan, X. Zhu, C. Zhang, and S. Y. Philip, (2018). “Multiple structure-view learning for graph classification,” IEEE Trans. Neural New. Learn. Syst., vol. 29, no. 7, pp. 3236–3251. https://doi.org/10.1109/TNNLS.2017.2703832
[2] Mikko Kivela, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A Porter. (2014). Multilayer networks. Journal of complex networks, 2(3):203-271. https://doi.org/10.1093/comnet/cnu016
[3] Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. (2017). Ensemble-based community detection in multilayer networks. Data Mining and Knowledge Discovery, 31(5): 1506-1543. https://doi.org/10.1007/s10618-017-0528-8.
[4] MA. Rodriguez and J. Shinavier. (2010). “Exposing multi-relational networks to single-relational network analysis algorithms,” Journal of Informetrics. vol.4, no.1, pp.29-41. https://doi.org/10.1016/j.joi.2009.06.004
[5] A. A. Amini, A.Chen, P. J. Bickel, and E. Levina, (2013). "Pseudo-likelihood methods for community detection in large sparse networks," Ann. Statist., vol. 41, no. 4, pp. 2097-2122. https://doi.org/10.1016/j.patcog.2024.110487.
[6] S.C.de Lange, M.A. de Reus, and M.P. (2014). van den Heuvel, "The Laplacian spectrum of neural networks," Front. Comput. Neurosci., vol. 7. https://doi.org/10.1016/B978-0-12-407908-3.00007-8.
[7] P. W. Holland, K. B. Laskey, and S. Leinhardt, (1983). “Stochastic blockmodels: First steps,” Soc. Networks, vol. 5, pp. 109–137. https://doi.org/10.1016/0378-8733(87)90015-3
[8] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, (2008). “Mixed membership stochastic blockmodels,” J.Mach.Learn.Res.,vol. 9, no. 65, pp. 1981–2014. https://doi.org/10.1016/j.jmva.2019.104540
[9] H. Xu, W. Xia, Q. Gao, J. Han, and X. Gao, (2021). “Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution,” Neural New., vol. 142, pp. 221–230. https:// doi.org./10.3390/math12050697
[10] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, (2020). “Multi-view attribute graph convolution networks for clustering,” in Proc. IJCAI, pp. 2973–2979. https://doi.org/10.1049/cvi2.12299
[11] W. Xia, Q. Wang, Q. Gao, X. Zhang, and X. Gao, (2021). “Self-supervised graph convolutional network for multi-view clustering,” IEEE Trans. Multimedia, early access. https://doi.org/10.1016/j.neucom.2021.07.090
[12] F. D. Malliaros and M. Vazirgiannis, (2013). “Clustering and community detection in directed networks: A survey,” Phys. Rep.-Rev. Sec. Phys. Lett., vol. 533, no. 4, pp.95-142. https://doi.org/10.1016/j.physa.2024.130036
[13] L. Tang, X. Wang and H. Liu, (2012). “Community detection via heterogeneous interaction analysis,” Data mining and knowledge discovery, vol. 25, no. 1, pp.1-33. DOI:10.1007/s10618-020-00716-6
[14] B. Boden, S. Günnemann, H. Hoffmann and T. Seidl, editors, (2012). “Mining coherent subgraphs in multi-layer graphs with edge labels,” In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '12). Association for Computing Machinery, New York, NY, USA. pp. 1258–1266. https://doi.org/10.1007/s10618-014-0365-y
[15] A. Tagarelli, A. Amelio and F. Gullo. (2017). “Ensemble-based community detection in multilayer networks,” Data Mining and Knowledge Discovery, vol. 31, no. 5, pp. 1506-1543. https://doi.org/10.1016/j.procs.2022.11.002
[16] D. Cai, Z. Shao, X. He, X. Yan and J. Han, (2005). “Community mining from multi-relational networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 445-452. https://doi.org/10.1007/11564126-44.
[17] G. Braun, H. Tyagi, C. Biernacki and editors, (2021). “Clustering multilayer graphs with missing nodes,” International Conference on Artificial Intelligence and Statistics, PMLR 130, pp. 2260-2268. https://doi.org/10.1007/s10618-012-0272-z
[18] MA. Rodriguez and J. Shinavier, (2010).“Exposing multi-relational networks to single-relational network analysis algorithms,” Journal of Informetrics. vol.4, no.1, pp.29-41. https://doi.org/10.1016/j.joi.2009.06.004
[19] L. Tang, X. Wang and H. Liu, (2012). “Community detection via heterogeneous interaction analysis,” Data mining and knowledge discovery, vol. 25, no. 1, pp. 1-33. DOI:10.1007/s10618-020-00716-6
[20] X. Liu, W. Liu, T. Murata and K. Wakita, (2014). “A framework for community detection in heterogeneous multi-relational networks,” Advances in Complex Systems, vol.17, no. 6, pp. 145-148. DOI:10.1016/j.procs.2019.09.184
[21] S. Pramanik, R. Tackx, A. Navelkar, J-L. Guillaume and B. Mitra, (2017). “Discovering community structure in multilayer networks.” 2017 IEEE International Conference on Data Science and Advanced Analytics(DSAA), IEEE, pp. 611–620. DOI:10.3390/sym15071368
[22] A. Amelio, C. Pizzuti and editors, (2014). “Community detection in multidimensional networks,” In International Conference on Parallel Problem Solving from Nature, Springer, pp. 222–232. DOI: 10.1109/ICTAI.2014.60
[23] FR. Khawaja, J. Sheng, B. Wang and Y. Memon, (2021). “Uncovering Hidden Community Structure in Multi-Layer Networks,” Applied Sciences, vol.11, no.6, pp. 28-57. DOI:10.3390/app11062857
[24] W. Tang, Z. Lu, IS. Dhillon, editors, (2009). “Clustering with multiple graphs”, 2009 Ninth IEEE International Conference on Data Mining, pp. 1016–1021. https://doi.org/10.1007/s10844-014-0307-6
[25] L. Tang, X. Wang, H. Liu, editors, (2009). “Uncoverning groups via heterogeneous interaction analysis”, 2009 Ninth IEEE International Conference on Data Mining, pp. 503-512. https://doi.org/10.1007/s11257-023-09359-w
[26] X. Dong, P. Frossard, P. Vandergheynst and N. Nefedov, (2012). “Clustering with multi-layer graphs: A spectral perspective,” IEEE Transactions on Signal Processing, vol.60, no. 11, pp.5820-5831. https://doi.org/10.1109/TSP.2012.2212886
[27] A. Trokicić and B. Todorović, (2019). “Constrained spectral clustering via multi-layer graph embeddings on a Grassmann manifold,” International Journal of Applied Mathematics and Computer Science, vol. 29, no. 1, pp.125-137. DOI:10.2478/amcs-2019-0010
[28] Al-Sharoa, E. M., & Aviyente, S. (2022). Community detection in fully-connected multi-layer networks through joint nonnegative matrix factorization. IEEE Access, 10, 43022-43043, DOI: 10.1109/ACCESS.2022.3168659
[29] T. Valles-Catala, FA. Massucci, R. Guimera and M. Sales-Pardo, (2016). “Multilayer stochastic block models reveal the multilayer structure of complex networks,” Physical Review, vol.6, no. 1, pp. 2546-2580. https://doi.org/10.1103/PhysRevX.6.011036.
[30] H. T. Ali, S. Liu, Y. Yilmaz, R. Couillet, I. Rajapakse and A. Hero, (2019). “Latent heterogeneous multilayer community detection,” In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 8142–8146. https://doi.org/10.48550/arXiv.1806.07963
[31] D. Zhou, CJ. Burges and editors, (2007). “Spectral clustering and transductive learning with multiple views,” In Proceedings of the 24th international conference on Machine learning, pp. 1159–1166. https://doi.org/10.1145/1273496.1273642
[32] X. Li, G. Xu and M. Tang, (2018). “Community detection for multi-layer social network based on local random walk,” Journal of Visual Communication and Image Representation, vol. 57, pp. 91-98. https://doi.org/10.1016/j.jvcir.2018.10.003
[33] Lei, J., Chen, K., & Lynch, B. (2020). Consistent community detection in multi-layer network data. Biometrika, 107(1), 61-73.https://doi.org/10.1093/biomet/asz068
[34] M. Contisciani, EA. Power and C. De Bacco, (2020). “Community detection with node attributes in multilayer networks,” Scientific reports, vol. 10, no. 1, pp. 1-16. https://doi.org/10.48550/arXiv.2004.09160
[35] D. Luo, Y. Bian, Y. Yan, X. Liu, J. Huan, X. Zhang and editors, (2020). “Local community detection in multiple networks,” Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, Association for Computing Machinery, New York, NY, USA, pp. 266–274. https://doi.org/10.1145/3644078
[36] Qing, H. (2024). Community detection in multi-layer bipartite networks. arXiv preprint arXiv:2405.04711. https://doi.org/10.48550/arXiv.2405.04711
[37] Zhen, Y., Xu, S., & Wang, J. (2024). Consistent community detection in multi-layer networks with heterogeneous differential privacy. arXiv preprint arXiv:2406.14772. https://doi.org/10.48550/arXiv.2406.14772
[38] Qing, H. (2024). Discovering overlapping communities in multi-layer directed networks. arXiv preprint arXiv:2407.16152. https://doi.org/ 10.48550/ arXiv.2407.16152
[39] Al-sharoa, E., & Aviyente, S. (2023). A Unified Spectral Clustering Approach for Detecting Community Structure in Multilayer Networks. Symmetry, 15(7), 1368. https://doi.org/10.3390/sym15071368
[40] P. Bródka, T. Filipowski, P. Kazienko and editors, (2011). “An introduction to community detection in multi-layered social network,” In World Summit on Knowledge Society, Springer, pp. 185–190. DOI:10.1007/978-3-642-35879-1_23
[41] M. Hmimida and R. Kanawati, (2015). “Community detection in multiplex networks: A seed-centric approach,” Networks & Heterogeneous Media, vol. 10, no. 1, pp. 71-85. DOI:10.3934/nhm.2015.10.71
[42] MR. Shahmoradi, M. Ebrahimi, Z. Heshmati and M. Salehi, (2019). “Multilayer overlapping community detection using multi-objective optimization,” Future Generation Computer Systems, vol. 101, pp. 221-235. https://doi.org/10.1016/j.future.2019.05.061
[43] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, (2017). “MGAE: marginalized graph autoencoder for graph clustering,” in Proceedings of CIKM, pp. 889–898. https://doi.org/10.1145/3132847.3132967
[44] B. Sun, H. Shen, J. Gao, W. Ouyang, and X. Cheng, (2017). “A non-negative symmetric encoder-decoder approach for community detection,” in Proceedings of CIKM, pp. 597–606. https://doi.org/10.1145/3132847.3132902
[45] Y. Jia, Q. Zhang, W. Zhang, and X. Wang, (2019). “Community Gan: Community detection with generative adversarial nets,” in Proceedings of WWW, pp. 784-794. https://doi.org/10.48550/arXiv.1901.06631
[46] Y. Zhang, Y. Xiong, Y. Ye, T. Liu, W. Wang, Y. Zhu, and P. S. Yu, (2020). “SEAL: learning heuristics for community detection with generative adversarial networks,” in Proceedings of SIGKDD, pp. 1103-1113. https://doi.org/10.1145/3394486.3403154
[47] P. W. Holland, K. B. Laskey, and S. Leinhardt, (1983). “Stochastic block-models: First steps,” Soc. Networks, vol. 5, no.2, pp. 109-137. https://doi.org/10.1016/0378-8733(83)90021-7
[48] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, (2008). “Mixed membership stochastic block models,” J. Mach. Learn. Res., vol. 9, pp. 1981-2014. https://doi.org/10.1145/3539618.3591675
[49] B. Karrer and M. E. J. Newman, (2011). “Stochastic blockmodels and community structure in networks,” Phys. Rev. E, vol. 83, no. 1. https://doi.org/10.1103/PhysRevE.83.016107
[50] A. A. Amini, A.Chen, P. J. Bickel, and E. Levina, (2013). "Pseudo-likelihood methods for community detection in large sparse networks," Ann. Statist., vol. 41, no. 4, pp. 2097-2122. https://doi.org/10.1214/13-AOS1138
[51] P. W. Holland, K. B. Laskey, and S. Leinhardt, (1983). “Stochastic blockmodels: First steps,” Soc. Networks, vol. 5, pp. 109–137. https://doi.org/10.1016/0378-8733(83)90021-7
[52] D. Jin, C. Huo, C. Liang, and L. Yang, (2021). “Heterogeneous graph neural network via attribute completion,” in Proceddings of WWW, pp. 391-400. https://doi.org/10.1145/3442381.3449914
[53] G. Sperl`ı, (2019). “A deep learning based community detection ap-proach,” in Proceedings of SAC, pp. 1107-1110. https://doi.org/10.1145/3297280.3297574
[54] F. Sun, M. Qu, J. Hoffmann, C. Huang, and J. Tang, (2019). “v Graph: A generative model for joint community detection and node representation learning,” in Proceedings of NeurIPS, pp. 512-522. https://doi.org/10.48550/arXiv.1906.07159
[55] S. Cavallari, V. W. Zheng, H. Cai, K. C. Chang, and E. Cambria, (2017). “Learning community embedding with community detection and node embedding on graphs,” in Proceedings of CIKM, pp. 377-386. https://doi.org/10.1016/j.ifacol.2021.04.226
[56] Z. He, J. Liu, Y. Zeng, L. Wei, and Y. Huang, (2021). “Content to node: Self-translation network embedding,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 431-443. https://doi.org/10.1109/TKDE.2019.2932388
[57] M. K. Rahman and A. Azad, (2019). “Evaluating the community structures from network images using neural networks,” in Proceedings of Complex Networks and Their Applications, vol. 881, pp. 866-878. DOI:10.1007/978-3-030-36687-2_72
[58] Qing, H. (2024). Community detection in multi-layer bipartite networks. arXiv preprint arXiv: 2405.04711. https://doi.org/10.48550/arXiv.2405.04711.
[59] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang, (2016). “Modularity based community detection with deep learning,” in Proceedings of IJCAI, pp. 2252–2258. DOI:10.3390/app112311447
[60] J. Cao, D. Jin, and J. Dang, (2018). “Autoencoder based community detection with adaptive integration of network topology and node contents,” in Proceedings of KSEM, vol. 11062, pp. 184–196. DOI:10.1007/978-3-319-99247-1_16
[61] V. Bhatia and R. Rani, (2019). “A distributed overlapping community detection model for large graphs using autoencoder,” Future Gener. Compute. Syst., vol. 94, pp. 16–26. https://doi.org/10.1016/j.future.2018.10.045
[62] Y. Xie, X. Wang, D. Jiang, and R. Xu, (2019). “High-performance com-munity detection in social networks using a deep transitive autoencoder,” Inf. Sci., vol. 493, pp. 75–90. DOI:10.1016/j.ins.2019.04.018
[63] J. Cao, D. Jin, and J. Dang, (2018). “Autoencoder based community detection with adaptive integration of network topology and node contents,” in Proceedings of KSEM, vol. 11062, pp. 184–196. dOI:10.1007/978-3-319-99247-1_16
[64] J. Di, G. Meng, L. Zhixuan, L. Wenhuan, H. Dongxiao, and F. Fogelman-Soulie, (2017). “Using deep learning for community discov-ery in social networks,” in Proceedings of ICTAI, pp. 160–167. DOI:10.1109/ICTAI.2017.00035
[65] H. Sun, F. He, J. Huang, Y. Sun, Y. Li, C. Wang, L. He, Z. Sun, and X. Jia, (2020). “Network embedding for community detection in attributed networks,” ACM Trans. Knowl. Discov. Data, vol. 14, no. 3, pp. 1–25. https://doi.org/10.1145/3385415
[66] F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu, (2014). “Learning deep representations for graph clustering,” in Proceedings of AAAI, pp. 1293–1299. DOI:10.1609/aaai.v28i1.8916
[67] V. Bhatia and R. Rani, (2018). “Dfuzzy: a deep learning-based fuzzy clustering model for large graphs,” Knowl. Inf. Syst., vol. 57, no. 1, pp. 159–181. https://doi.org/10.1007/s10115-018-1156-3
[68] R. Xu, Y. Che, X. Wang, J. Hu, and Y. Xie, (2020). “Stacked autoencoder-based community detection method via an ensemble clustering framework,” Inf. Sci., vol. 526, pp. 151–165. https://doi.org/10.1007/s11227-022-04767-y
[69] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, (2017). “MGAE: marginal-ized graph autoencoder for graph clustering,” in Proceedings of CIKM, pp. 889–898. https://doi.org/10.1145/3132847.3132967
[70] C. Yang, M. Liu, Z. Wang, L. Liu, and J. Han, (2017). “Graph clustering with dynamic embedding.,” arXiv. https://doi.org/10.48550/arXiv.1712.08249.
[71] Wu, Y., Fu, Y., Xu, J., Yin, H., Zhou, Q., & Liu, D. (2023). Heterogeneous question answering community detection based on graph neural network. Information Sciences, 621, 652-671.‏ https://doi.org/10.1016/j.ins.2022.10.126
[72] Cai, X., & Wang, B. (2023). A graph convolutional fusion model for community detection in multiplex networks. Data Mining and Knowledge Discovery, 37(4), 1518-1547.‏ https://doi.org/10.1007/s10618-023-00932-w
[73] Liu, X., Wu, Y., Fiumara, G., & De Meo, P. (2024). Heterogeneous graph community detection method based on K-nearest neighbor graph neural network. Intelligent Data Analysis, (Preprint), 1-22.‏ https://doi.org/10.3233/IDA-230356
[74] Yuan, Shunjie., Zeng, Hefeng., Zuo, Ziyang., (2023). Wang, Chao., "Overlapping community detection on complex networks with Graph Convolutional Networks". https://www.sciencedirect.com/science/article/abs/pii/S0140366422004583. https://doi.org/10.1016/j.comcom.2022.12.008
[75] Kumar, S., Mallik, A. & Sengar, S.S. Community detection in complex networks using stacked autoencoders and crow search algorithm. J Supercomput 79, 3329–3356 (2023). https://doi.org/10.1007/s11227-022-04767-y
[76] D. He, L. Zhai, Z. Li, D. Jin, L. Yang, Y. Huang, and P. S. Yu, (2020). “Ad-versarial mutual information learning for network embedding,” in Proceedings of IJCAI, pp. 3321-3327. https://doi.org/10.24963/ijcai.2020/459
[77] S. Fortunato, (2010). “Community detection in graphs,” Physics reports, vol.486, no. 3-5, pp. 75-174. https://doi.org/10.1016/j.physrep.2009.11.002
[78] Molnár, B., Márton, IB., Horvát, S. et al. Community detection in directed weighted networks using Voronoi partitioning. Sci Rep 14, 8124 (2024). https://doi.org/10.1038/ s41598-024-58624-4
[79] H. Kautz, B. Selman and M. Shah, (1997). “Referral Web: combining social networks and collaborative filtering,” Communications of the ACM, vol. 40, no. 3, pp. 63-65. DOI:10.1145/245108.245123
[80] FD. Malliaros and M. Vazirgiannis, (2013). “Clustering and community detection in directed networks: A survey,” Physics reports, vol. 533, no. 4, pp. 95-142. https://doi.org/10.1016/j.physrep.2013.08.002
[81] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, (2018). “Adversarially regularized graph autoencoder for graph embedding,” in Proc. IJCAI, pp. 2609–2615. https://doi.org/10.48550/arXiv.1802.04407
[82] R. Rossi and N. Ahmed, (2015). “The network data repository with inter-active graph analytics and visualization,” in Proc. AAAI, pp. 4292–4293. https://doi.org/10.1609/aaai.v29i1.9277
[83] R. Mastrandrea, J. Fournet, and A. Barrat, (2015). “Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys,” PLoS ONE, vol. 10, no. 9, Art. no. e0136497. DOI:10.1371/journal.pone.0136497
[84] S. Pramanik, R. Tackx, A. Navelkar, J-L. Guillaume and B. Mitra, (2017). “Discovering community structure in multilayer networks.” 2017 IEEE International Conference on Data Science and Advanced Analytics(DSAA), IEEE, pp. 611–620. DOI:10.1109/DSAA.2017.71
[85] A. Amelio, C. Pizzuti and editors, (2014). “Community detection in multidimensional networks,” In International Conference on Parallel Problem Solving from Nature, Springer, pp. 222–232. DOI:10.1109/ICTAI.2014.60
[86] M. Hmimida and R. Kanawati, (2015). “Community detection in multiplex networks: A seed-centric approach,” Networks & Heterogeneous Media, vol. 10, no. 1, pp. 71-85. https://doi.org/10.1016/j.eswa.2020.113184
[87] A. Tagarelli, A. Amelio and F. Gullo, (2017). “Ensemble-based community detection in multilayer networks,” Data Mining and Knowledge Discovery, vol. 31, no. 5, pp. 1506-1543. https://doi.org/10.1016/j.procs.2022.11.002
[88] Roozbahani, Z., Rezaeenour, J., & Katanforoush, A. (2023). Community detection in multi-relational directional networks. Journal of Computational Science, 67. https://doi.org/10.1016/j.jocs.2023.101962
[89] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, (2020). “Beyond homophily in graph neural networks: Current limitations and effective designs,” in Proc. NIPS. https://doi.org/10.1016/j.spasta.2024.100822
[90] X. Xin, C. Wang, X. Ying, and B. Wang, (2017). “Deep community detection in topologically incomplete networks,” Physica A, vol. 469, pp. 342–352. https://doi.org/10.1016/j.jksuci.2024.102008
[91] R. Mastrandrea, J. Fournet, and A. Barrat, (2015). “Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys,” PLoS ONE, vol. 10, no. 9, Art. no. e0136497. https://doi.org/10.1016/j.procs.2023.10.274
[92] P. Massa and P. Avesani, (2005).“Controversial users demand local trust metrics: An experimental study on Epinions. com community,” in Proc. AAAI, vol. 5, pp. 121–126. DOI:10.1007/978-3-642-13446-3_16
[93] J. Leskovec, D. Huttenlocher, and J. Kleinberg, (2010). “Governance in social media: A case study of the Wikipedia promotion process,” in Proc. ICWSM, no. 1. https://doi.org/10.1145/2124295.2124378
[94] P. Xu, W. Hu, J. Wu, and B. Du, (2019). “Link prediction with signed latent factors in signed social networks,” in Proc. KDD, pp. 1046–1054. https://doi.org/10.24963/ijcai.2020/168
[95] X. Shen and F.-L. Chung, (2020). “Deep network embedding for graph repre-sentation learning in signed networks,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1556–1568. DOI:10.1109/TCYB.2018.2871503
CAPTCHA Image