Document Type : Original Article
Authors
Department of Industrial Engineering, Faculty of Engineering, University of Ferdowsi of Mashhad, Mashhad, Iran
Abstract
Keywords
Main Subjects
Azoulay, P., Jones, B. F., Kim, J. D., & Miranda, J. (2020). Age and high-growth entrepreneurship. American Economic Review: Insights, 2(1), 65-82. https://dx.doi.org/10.3386/w24489
Bailly, A., Blanc, C., Francis, É., Guillotin, T., Jamal, F., Wakim, B., & Roy, P. (2022). Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine, 213, 106504. http://dx.doi.org/10.1016/j.cmpb.2021.106504 .
Bazerman, M. H., & Moore, D. A. (2012). Judgment in managerial decision making. John Wiley & Sons. http://dx.doi.org/10.4324/9780203141939-11
Bolarinwa, O. A. (2015). Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. Nigerian Postgraduate Medical Journal, 22(4), 195. http://dx.doi.org/10.4103/1117-1936.173959
Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery.
Cassar, G. (2004). The financing of business start-ups. Journal of Business Venturing, 19(2), 261-283. https://doi.org/10.1016/S0883-9026(03)00029-6
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., & Zhou, T. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4. http://dx.doi.org/10.32614/cran.package.xgboost
Ding, H., Sun, Y., Wang, Z., Huang, N., Shen, Z., & Cui, X. (2023). RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification. Information Processing & Management, 60(2), 103235. http://dx.doi.org/10.1016/j.ipm.2022.103235
Dominic, C., & Gupta, A. (2020). Psychological factors affecting investors decision making. Journal of Xi’an University of Architecture and Technology, 7(6), 169-181. http://dx.doi.org/10.55041/ijsrem30872 .
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14, 241-258 . http://dx.doi.org/10.1007/s11704-019-8208 .
Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. https://doi.org/10.48550/arXiv.1810.1136 .
Elston, D. M. (2021). Survivorship bias. Journal of the American Academy of Dermatology. http://dx.doi.org/10.1016/j.jaad.2021.06.84 .
Fotouhi, S., Asadi, S., & Kattan, M. W. (2019). A comprehensive data level analysis for cancer diagnosis on imbalanced data. Journal of biomedical informatics, 90, 103089. https://doi.org/10.1016/j.jbi.2018.12.003
Franco, S., Cappa, F., & Pinelli, M. (2021). Founder Education and Start-Up Funds Raised. IEEE Engineering Management Review, 49(3), 42-48. https://doi.org/10.1109/EMR.2021.3077966
Frid, C. J., Wyman, D. M., Gartner, W. B., & Hechavarria, D. H. (2016). Low-wealth entrepreneurs and access to external financing. International Journal of Entrepreneurial Behavior & Research. http://dx.doi.org/10.1108/ijebr-08-2015-0173
Ganda, D., & Buch, R. (2018). A survey on multi label classification. Recent Trends in Programming Languages, 5(1), 19-23
Gong, J., & Kim, H. (2017). RHSBoost: Improving classification performance in imbalance data. Computational Statistics & Data Analysis, 111, 1-13. http://dx.doi.org/10.1016/j.csda.2017.01.005
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. https://doi.org/10.1145/3422622
Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques third edition. University of Illinois at Urbana-Champaign Micheline Kamber Jian Pei Simon Fraser University.
Hebert, C. (2020). Gender stereotypes and entrepreneur financing. 10th Miami Behavioral Finance Conference.
Israel, G. D. (1992). Determining sample size. https://dx.doi.org/10.2139/ssrn.3318245
Jafari, R. (2022). Hands-On Data Preprocessing in Python: Learn How to Effectively Prepare Data for Successful Data Analytics. Packt Publishing. https://books.google.com/books?id=nzmnzgEACAAJ .
Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
Krawezik, G. P., Kogge, P. M., Dysart, T. J., Kuntz, S. K., & McMahon, J. O. (2018). Implementing the jaccard index on the migratory memory-side processing emu architecture. 2018 IEEE High Performance extreme Computing Conference (HPEC).
Langer, E. J. (1975). The illusion of control. Journal of personality and social psychology, 32(2), 311. http://dx.doi.org/10.1037//0022-3514.32.2.311
Lybaert, N., & Umans, I. (2022). Start-up Performance: Looking for an Explanation in Entrepreneurial Characteristics and Financing Choice. European Conference on Innovation and Entrepreneurship, https://doi.org/10.34190/ecie.17.1.833
Marsland, S. (2014). Machine Learning: An Algorithmic Perspective, Second Edition. CRC Press. https://books.google.com/books?id=6GvSBQAAQBAJ .
McCallum, Q. E. (2012). Bad data handbook: cleaning up the data so you can get back to work. " O'Reilly Media, Inc.".
Myung, I. J. (2000). The importance of complexity in model selection. Journal of mathematical psychology, 44(1), 190-204. https://doi.org/10.1006/jmps.1999.1283
Ouimet, P., & Zarutskie, R. (2014). Who works for startups? The relation between firm age, employee age, and growth. Journal of financial Economics, 112(3), 386-407. https://doi.org/10.1016/j.jfineco.2014.03.003
Pavlov, Y. L. (2019). Random forests. In Random Forests. De Gruyter.
Pushpa, M., & Karpagavalli, S. (2017). Multi-label classification: problem transformation methods in Tamil phoneme classification. Procedia Computer Science, 115, 572-579. https://doi.org/10.1016/j.procs.2017.09.116
Ramalakshmi, V., Pathak, V. K., & Mary, C. (2019). Impact of Cognitive Biases on investment decision making. Journal of Critical Reviews, 6(6), 59-64
Rivolli, A., Read, J., Soares, C., Pfahringer, B., & de Carvalho, A. C. (2020). An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Machine Learning, 109, 1509-1563. https://doi.org/10.1007/s10994-020-05879-3
Rosenfeld, A., & Kraus, S. (2018). Predicting human decision-making: From prediction to action. Synthesis lectures on artificial intelligence and machine learning, 12(1), 1-150. https://doi.org/10.1007/978-3-031-01578-6_3
Rosyidah, U., & Pratikto, H. (2022). The role of behavioral bias on financial decision making: a systematic literature review and future research agenda. Journal of Enterprise and Development (JED), 4(1), 156-179. https://doi.org/10.20414/jed.v4i1.5102
Simon, M., & Houghton, S. M. (2003). The relationship between overconfidence and the introduction of risky products: Evidence from a field study. Academy of management journal, 46(2), 139-149. https://doi.org/10.5465/30040610
Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., & Asadpour, M. (2020). Boosting methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, 7, 1-47. https://doi.org/ 10.1186/s40537-020-00349-y
Tech, R. P. (2018). Financing high-tech startups. Springer. https://doi.org/10.1007/978-3-319-66155-1
Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. Data mining and knowledge discovery handbook, 667-685. https://doi.org/10.1007/978-0-387-09823-434
Ul Abdin, S. Z., Qureshi, F., Iqbal, J., & Sultana, S. (2022). Overconfidence bias and investment performance: A mediating effect of risk propensity. Borsa Istanbul Review, 22(4), 780-793. https://doi.org/10.1016/j.bir.2022.03.001
Vo, D. H. (2019). Patents and Early‐Stage Financing: Matching versus Signaling. Journal of small business management, 57(4), 1252-1279. https://doi.org/10.1111/jsbm.12414
Wu, G., & Zhu, J. (2020). Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? Advances in Neural Information Processing Systems, 33, 3130-3140. https://doi.org/10.48550/arXiv.2011.07805
Zahera, S. A., & Bansal, R. (2018). Do investors exhibit behavioral biases in investment decision making? A systematic review. Qualitative Research in Financial Markets. https://doi.org/10.1108/QRFM-04-2017-0028
Zhang, S. X., & Cueto, J. (2017). The study of bias in entrepreneurship. Entrepreneurship theory and Practice, 41(3), 419-454. https://doi.org/10.1111/etap.12212
Zhang, S. X., Foo, M.-D., & Vassolo, R. S. (2021). The ramifications of effectuation on biases in entrepreneurship–Evidence from a mixed-method approach. Journal of Business Venturing Insights, 15, e00238. https://doi.org/10.1016/j.jbvi.2021.e00238
Zhang, Y., & Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128, 63-72. https://doi.org/10.1016/j.future.2021.09.033
Send comment about this article