Document Type : Original Article
Authors
1 Assistance prof. Department of Industrial Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran, Email: Hemati.asghar@iau.ir
2 PhD student, Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, Email: Farshadkaveh@gmail.com
3 PhD. Department of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran, Email: m.abolghasemian.bt@gmail.com
4 PhD. Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran, Email: apourghader@qiau.ac.ir
Abstract
Keywords
Main Subjects
Abolghasemian, M., & Darabi, H. (2018). Simulation based optimization of haulage system of an open-pit mine: Meta modeling approach. Organizational resources management researchs, 8(2), 1-17. http://dorl.net/dor/20.1001.1.22286977.1397.8.2.2.6
Abolghasemian, M., Ghane Kanafi, A., & Daneshmandmehr, M. (2020). A two-phase simulation-based optimization of hauling system in open-pit mine. Iranian journal of management studies, 13(4), 705-732. https://doi.org/10.22059/ijms.2020.294809.673898
Abolghasemian, M., Kanafi, A. G., & Daneshmand-Mehr, M. (2022). Simulation-based multiobjective optimization of open-pit mine haulage system: a modified-NBI method and Meta modeling approach. Complexity, 2022. https://doi.org/10.1155/2022/3540736
Afolalu, S. A., Ikumapayi, O. M., Abdulkareem, A., Emetere, M. E., & Adejumo, O. (2021). A short review on queuing theory as a deterministic tool in sustainable telecommunication system. Materials Today: Proceedings, 44, 2884-2888. https://doi.org/10.1016/j.matpr.2021.01.092
Ahmed, M. A., Al – Khamis, T. M. (2009). Simulation Optimization for an Emergency Department Healthcare Unit in Kuwait, European Journal of Operational Research, 198, 936-942. https://doi.org/10.1016/j.ejor.2008.10.025
Ala, A., Yazdani, M., Ahmadi, M., Poorianasab, A., & Attari, M. Y. N. (2023). An efficient healthcare chain design for resolving the patient scheduling problem: queuing theory and MILP-ASA optimization approach. Annals of Operations Research, 328(1), 3-33. https://doi.org/10.1007/s10479-023-05287-5
Azizi, S., Shakibi, H., Shokri, A., Chitsaz, A., & Yari, M. (2024). Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system. Applied Energy, 332, 120487. https://doi.org/10.1016/j.apenergy.2022.120487
Barati, I., Ahari, R. M., & Asadpour, M. (2022). A queuing network and Markov chain approach for balancing assembly line: a case study. International Journal of Advanced Operations Management, 14(1), 56-73. https://doi.org/10.1504/IJAOM.2022.122699
Boulas, K. S., Dounias, G. D., & Papadopoulos, C. T. (2023). A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines. Journal of Intelligent Manufacturing, 1-30. https://doi.org/10.1007/s10845-021-01828-6
Damci, A. (2022). Revisiting the concept of natural rhythm of production in line of balance scheduling. International Journal of Construction Management, 22(12), 2335-2344. https://doi.org/10.1080/15623599.2020.1786764
Dengiz, B. (2009). Redesign of PCB Production Line with Simulation and Taguchi Design. Proceedings of the Winter Simulation Conference, 2197 – 2204. https://doi.org/10.1109/WSC.2009.5429646
Dengiz, B., & Akbay, K. S. (2000). Computer Simulation of a PCB Production Line: Meta – Modeling Approach. International Journal Production Economy. 63, 195 – 205. https://doi.org/10.1016/S0925-5273(99)00013-4
Dengiz, B., Bektas, T., Ultanir, A. E. (2006). Simulation Optimization Based DSS Application: A Diamond Tool Production Line in Industry, Simulation Model Practice Theory, 14(3), 296 – 312. https://doi.org/10.1016/j.simpat.2005.07.001
Dengiz, B., İç, Y. T., & Belgin, O. (2016). A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120, 120-128. https://doi.org/10.1016/j.matcom.2015.07.005
Hurrion, R. (1997). An Example of Simulation Optimisation Using a Neural Network Metamodels: Finding the optimum number of Kanbans in a Manufacturing System, Journal of the Operational Research Society, 48(11), 1105 – 1112. https://doi.org/10.1057/palgrave.jors.2600468
Jahangiri, S., Abolghasemian, M., Ghasemi, P., & Chobar, A. P. (2023). Simulation-based optimisation: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering, 43(1), 1-19. https://doi.org/10.1504/IJISE.2023.128399
Kleijnen, J. P. C., & Sargent, R. G. (2000). A Methodology for Fitting and Validating Metamodels in Simulation. European Journal of Operatioanal Research, 120, 14 – 29. https://doi.org/10.1016/S0377-2217(98)00392-0
Liu, Y., Shen, W., Zhang, C., & Sun, X. (2023). Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors. Robotics and Computer-Integrated Manufacturing, 80, 102478. https://doi.org/10.1016/j.rcim.2022.102478
Mas, L., Vilaplana, J., Mateo, J., & Solsona, F. (2022). A queuing theory model for fog computing. The Journal of Supercomputing, 78(8), 11138-11155. https://doi.org/10.1007/s11227-022-04328-3
Meckesheimer, M., Barton, R. R., Simpson, T. W., & Booker, A. J. (2001, September). Computationally inexpensive metamodel assessment strategies. In International design engineering technical conferences and computers and information in engineering conference (Vol. 80227, pp. 191-201). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2001/DAC-21028
Piermarini, C., & Roma, M. (2024). A Simulation--Based Optimization approach for analyzing the ambulance diversion phenomenon in an Emergency-Department network. arXiv preprint arXiv:2309.00643. https://doi.org/10.48550/arXiv.2309.00643
Samouylov, K., Gaidamaka, Y., & Zaripova, E. (2016, September). Analysis of business process execution time with queueing theory models. In International Conference on Information Technologies and Mathematical Modelling (pp. 315-326). Springer, Cham. https://doi.org/10.1007/978-3-319-44615-8_28
Urban, T. L., & Chiang, W. C. (2016). Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem. European Journal of Operational Research, 248(3), 789-801. https://doi.org/10.1016/j.ejor.2015.07.015
Yalçınkaya, Ö., & Bayhan, G. M. (2009). Modelling and optimization of average travel time for a metro line by simulation and response surface methodology, European journal of operational research, 196(1), 225-233. https://doi.org/10.1016/j.ejor.2008.03.010
Yang, Q., & Liu, W. (2022). Production line balance optimization design of S company. Manufacturing and Service Operations Management, 3(1), 57-71. https://dx.doi.org/10.23977/msom.2022.030109
Zeinali F., Mahootchi M., Sepehri M M. (2015). Resource Planning in the Emergency Department: A Simulation – Based Meta Modeling Approach, Simulation Modeling Practice and Theory, 53(2), 123-148. https://doi.org/10.1016/j.simpat.2015.02.002
Send comment about this article