Document Type : Original Article
Authors
Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract
Keywords
Main Subjects
Appineni, A. and Gupta, A. (2023). Preemptive Diagnosis of Parkinson's Disease through DaT Scans using InceptionV3-based Convolutional Neural Networks. https://doi.org/10.20944/preprints202312.2268.v1
Faull, R. and Laverty, R. (1969). Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Experimental neurology, 23(3): p. 332-340. https://doi.org/10.1016/0014-4886(69)90081-8
Poewe, W., et al., (2017). Parkinson disease. Nature reviews Disease primers, 3(1): p. 1-21. https://doi.org/10.1038/nrdp.2017.13
Wang, W., et al., (2020). Early detection of Parkinson’s disease using deep learning and machine learning. IEEE Access, 8: p. 147635-147646. https://doi.org/10.1038/nrdp.2017.13
Wile, D.J., et al., (2017). Serotonin transporter binding and motor onset of Parkinson's disease in asymptomatic LRRK2 mutation carriers: a cross-sectional study. The Lancet. Neurology, 16(5): p. 351. https://doi.org/10.1016/S1474-4422(17)30056-X
Marek, K., et al., (1996). [sup 123 I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson's disease. Neurology, 46(1): p. 231-237. https://doi.org/10.1212/WNL.46.1.231
Mohammed, F., He, X. and Lin, Y. (2021). Retracted: An easy-to-use deep-learning model for highly accurate diagnosis of Parkinson's disease using SPECT images. Computerized Medical Imaging and Graphics. https://doi:10.1016/j.compmedimag.2020.101810
Govindu, A. and Palwe, S. (2023). Early detection of Parkinson's disease using machine learning. Procedia Computer Science, 218: p. 249-261. https://doi.org/10.1016/j.procs.2023.01.007
Tuncer, T., Dogan, S. and Acharya, U.R. (2020). Automated detection of Parkinson's disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybernetics and Biomedical Engineering, 40(1): p. 211-220. https://doi.org/10.1016/j.bbe.2019.05.006
Magesh, P.R., Myloth, R.D. and Tom, R.J. (2020). An explainable machine learning model for early detection of Parkinson's disease using LIME on DaTSCAN imagery. Computers in Biology and Medicine, 126: p. 104041. https://doi.org/10.1016/j.compbiomed.2020.104041
Hathaliya, J., et al., (2022). Convolutional neural network-based Parkinson disease classification using SPECT imaging data. Mathematics, 10(15): p. 2566. https://doi.org/10.3390/math1015256
Marek, K., et al., (2011). The Parkinson progression marker initiative (PPMI). Progress in neurobiology, 95(4): p. 629-635. https://10.1016/j.pneurobio.2011.09.005
Martinez-Murcia, F.J., et al., (2018). Convolutional neural networks for neuroimaging in Parkinson’s disease: Is preprocessing needed?, International journal of neural systems, 28(10): p. 1850035. https://doi.org/10.1142/S0129065718500351
Mash, R., Borghetti, B. and Pecarina, J. (2016). Improved aircraft recognition for aerial refueling through data augmentation in convolutional neural networks. in Advances in Visual Computing: 12th International Symposium, ISVC 2016, Las Vegas, NV, USA, December 12-14, Proceedings, Part I 12. 2016. Springer. https://doi.org/10.1007/978-3-319-50835-1_11
Dehghan, R., Naderan, M. and Alavi, S.E. (2022). Detection of Parkinso’s disease using Convolutional Neural Networks and Data Augmentation with SPECT images. in 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE. 17-18 Nov., Mashhad, Iran. https://doi.org/10.1109/ICCKE57176.2022.9960085
Zhou, B., et al. (2016). Learning deep features for discriminative localization. in Proceedings of the IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2016.319
Selvaraju, R.R., et al. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision. 22-29 October, Venice, Italy. https://doi.org/10.1109/ICCV.2017.74
Krstinić, D., et al., (2020). Multi-label classifier performance evaluation with confusion matrix. Computer Science & Information Technology, 1: p. 1-14. https://10.5121/csit.2020.100801
Send comment about this article