Ahmed, A. Khan, S. H. Khan, A. Basit, I. U. Haq, and Y. S. Lee, “
Transfer Learning and Meta Classification Based Deep Churn Prediction System for Telecom Industry,” pp. 1–10, 2022.
https://doi.org/10.1016/j.apmrv.30214.02.003Amin., “Customer churn prediction in the telecommunication sector using a rough set approach,” Neurocomputing, vol. 237, 2017.
https://doi.org/10.1016/j.apmrv.2018.02.056H. A. Kandel, “A comparative study of tree-based models for churn prediction: a case study in the telecommunication sector.” 2019. DOI:10.1007/s00170-013-5021-yAmin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, “
Customer churn prediction in telecommunication industry using data certainty,” J. Bus. Res., vol. 94, pp. 290–301, 2019.
https://doi.org/10.1016/j.amc.2005.01.081
Baliga, A. J., Chawla, V., Sunder M, V., & Kumar, R.
Barriers to service recovery in B2B markets: a TISM approach in the context of IT-based services. Journal of Business & Industrial Marketing. 1(11), 202-226, 2021. DOI:
https://10.1016/S0305-0548(03)00095-9
Christy, A.J.; Umamakeswari, A.; Priyatharsini, L.; Neyaa,
A. RFM ranking-An effective approach to customer segmentation. J. King. Saud. Univ. Sci., 33, 1251–1257, 2021. DOI:
https://doi.org/10.1016/j.apm.2012.04.041
De Lima Lemos, R.A.; Silva, T.C.; Tabak, B.M.
Propension to customer churn in a financial institution: A machine learning approach. Neural Comput. Appl, 1–18, 2022. (DOI):
https://doi.org/10.22059/IMJ.2016.61711
Spanoudes and T. Nguyen, “Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors,” pp. 1–22, 2017.
https://doi.org/10.1016/j.fss.2011.03.003
Elena Dumitrescu et al.,
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects", European Journal of Operational Research, 2021.
https://doi.org/10.1016/S1874-8651(10)75329-4
S. Halibas, A. C. Matthew, I. G. Pillai, J. H. Reazol, E. G. Delvo, and L. B. Reazol, “
Determining the intervening effects of exploratory data analysis and feature engineering in telecoms customer churn modelling,” in 2018 4th MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–7, 2018.
https://doi.org/10.1016/S1874-8651(10)56951-4Zhang, W. Li, T. Mo, and W. Tan, “
Deep and Shallow Model for Insurance Churn Prediction Service,” 2019, doi: 10.1109/SCC.2017.
Jain, H.; Yadav, G.; Manoov, R. Churn prediction and retention in banking, telecom and IT sectors using machine learning techniques. In Advances in Machine Learning and Computational Intelligence; Springer: Singapore, pp. 137–156, 2022.
https://doi.org/10.1016/S1874-8651(10)60001-4
Li, M.; Wang, Q.W.; Shen, Y.Z.; Zhu, T.Y. Customer relationship management analysis of outpatients in a Chinese infectious disease hospital using drug-proportion recency-frequency-monetary model. Int. J. Med. Inform, 147, 104373, 2021.
https://doi.org/10.1016/S1874-8651(10)60384-4
Li, Y.; Chu, X.Q.; Tian, D.; Feng, J.Y.; Mu, W.S.
Customer segmentation using K-means clustering and the adaptive. Appl. Soft Comput, 113, 107924, 2021.Silveira, L.J.; Pinheiro, P.R.; Junior, L.S.D.M.
A Novel Model Structured on Predictive Churn Methods in a Banking Organization. J. Risk Financ. Manag. 14, 481, 2022.
https://doi.org/10.1016/S1874-8651(10)60852-4
Muneer, A.; Ali, R.F.; Alghamdi, A.; Taib, S.M.; Almaghthawi, A.; Ghaleb, E.A.A.
Predicting customers churning in banking industry: A machine learning approach. Indones. J. Electr. Eng. Comput. Sci, 26, 539–549, 2022.
https://doi.org/10.1016/S1874-8651(10)60374-4
Rao,
"Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems," International Journal of Industrial Engineering Computations, vol. 7, no. 1, pp. 19-34, 2016.
https://doi.org/10.1016/S1874-8651(10)60874-4Maldonado, J. López, and C. Vairetti, “
Profit-based churn prediction based on Minimax Probability Machines,” Eur. J. Oper. Res., vol. 284, no. 1, pp. 273–284, doi: 10.1016/j.ejor.2020.12.007, 2020.
https://doi.org/10.1016/S1874-8651(10)60932-4
Sunday, K., Ocheja, P., Hussain, S., Oyelere, S., Samson, B., Agbo, F
.: Analyzing student performance in programming education using classification techniques. Int. J. Emerg. Technol. Learn. (iJET) 15(2), 127–144, 2020.
https://doi.org/10.1016/S1874-8651(10)60037-4
Calzada-Infante, M. Óskarsdóttir, and B. Baesens, “
Evaluation of customer behavior with temporal centrality metrics for churn prediction of prepaid contracts,” Expert Syst. Appl., vol. 160, p. 113553, doi: 10.1016/j.eswa.2020.113553, 2020.
https://doi.org/10.1016/S1874-8651(10)60035-4
Tékouabou, S.C.K.; Chabbar, I.; Toulni, H.; Cherif, W.; Silkan, H. Optimizing the early glaucoma detection from visual fields by combining preprocessing techniques and ensemble classifier with selection strategies. Expert Syst. Appl, 189, 115975, 2022.
https://doi.org/10.1016/S1874-8651(10)67841-4
Amin et al., “
Just-in-time customer churn prediction in the telecommunication sector,” J. Supercomput., vol. 76, no. 6, pp. 3924–3948, doi: 10.1007/s11227-017-2149-9, 2020.
https://doi.org/10.1016/S1874-8651(10)62134-4M. Kostić, M. I. Simić, and M. V Kostić, “
Social Network Analysis and Churn Prediction in Telecommunications Using Graph Theory,” Entropy, vol. 22, no. 7, p. 753, 2020.
https://doi.org/10.1016/S1874-8651(10)60001-4Özmen, E. K. Aydoğan, Y. Delice, and M. D. Toksarı, “
Churn prediction in Turkey’s telecommunications sector: A proposed multiobjective–cost-sensitive ant colony optimization,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 10, no. 1, p. e1338, doi: 10.1002/widm.1338, 2020.
https://doi.org/10.1016/S1874-8651(10)60001-4
Veningston, K.; Rao, P.V.; Selvan, C.; Ronalda, M. Investigation on Customer Churn Prediction Using Machine Learning Techniques. In Proceedings of International Conference on Data Science and Applications; Springer: Singapore, pp. 109–119, 2022.
https://doi.org/10.1016/S1874-8651(10)60001-4
Ahmed, H. Afzal, I. Siddiqi, M. F. Amjad, and K. Khurshid, “
Exploring nested ensemble learners using overproduction and choose approach for churn prediction in telecom industry,” Neural Comput. Appl., vol. 32, no. 8, pp. 3237–3251, doi:
https://10.1007/s00521-018-3678-8, 2020.Jain, A. Khunteta, and S. Srivastava, “
Churn Prediction in Telecommunication using Logistic Regression and Logit Boost,” Procedia Comput. Sci., vol. 167, pp. 101–112, doi:
https://10.1016/j.procs.2020.03.187,2020.
Wu, J.; Shi, L.; Yang, L.P.; Niu, X.X.; Li, Y.Y.; Cui, X.D.; Tsai, S.B.; Zhang, Y.B.
User Value Identification Based on Improved RFM Model and K-Means++ Algorithm for Complex Data Analysis. Wirel Commun. Mob.Com, 9982484, 1–8, 2021.
https://doi.org/10.1016/S1874-8651(10)60001-4
Send comment about this article