Alsuliman T., Humaidan D., Sliman L. Machine learning and artificial intelligence in the service of medicine: necessity or potentiality? Current Research in Translational Medicine. 2020 DOI:
https://doi.org/10.1016/j.retram.2020.01.002 . In Press.
Amukele T., Ness P.M., Tobian A.A.R., Boyd J., Street J. Drone transportation of blood products. Transfusion. 2016;57:582–588. DOI:
https://doi.org/10.1111/trf.13900.
Amukele T.K., Sokoll L.J., Pepper D., Howard D.P., Street J. Can unmanned aerial systems (drones) be used for the routine transport of chemistry, hematology, and coagulation laboratory specimens? PLoS One. 2015;10 DOI:
https://doi.org/10.1371/journal.pone.0134020.
anzert S., Guttmann J., Kersting K., Kuhlen R., Putensen C., Sydow M., Kramer S. Analysis of respiratory pressure–volume curves in intensive care medicine using inductive machine learning. Artif. Intell. Med. 2002;26:69–86. DOI:
https://doi.org/10.1016/S0933-3657(02)00053-2 .
Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019;25:954–961. DOI:
https://doi.org/10.1038/s41591-019-0447-x
Babu N., Reddy B.S. Challenges and opportunity of E-learning in developed and developing countries- a review. International Journal of Emerging Research in Management and Technology. 2015;4:259–262. DOI:
https://doi.org/10.1007/978-3-319-23207-2_41
Bates D.W., Saria S., Ohno-Machado L., Shah A., Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 2014;33:1123–1131. DOI:
https://doi.org/10.1377/hlthaff.2014.0041
Bhagyashree S.I.R., Nagaraj K., Prince M., Fall C.H.D., Krishna M. Diagnosis of dementia by machine learning methods in epidemiological studies: a pilot exploratory study from south India. Soc. Psychiatry Psychiatr. Epidemiol. 2017;53:77–86. DOI:
https://doi.org/10.1007/s00127-017-1410-0 .
Bizzo B.C., Almeida R.R., Michalski M.H., Alkasab T.K. Artificial intelligence and clinical decision support for radiologists and referring providers. Journal of American College of Radiology. 2019;16:1351–1356. DOI:
https://doi.org/10.1016/j.jacr.2019.06.010 .
Buch V.H., Ahmed I., Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br. J. Gen. Pract. 2018;68:143–144. DOI:
https://doi.org/10.3399/bjgp18x695213.
Chen S., Xu H., Liu D., Hu B., Wang H. A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 2014;1:349–359. DOI:
https://doi.org/10.1109/jiot.2014.2337336.
Cinelli M., Quattrociocchi W., Galeazzi A., Valensise C., Brugnoli E. 2020. The COVID-19 Social Media Infodemic. Social and Information Networks (Cs.SI) Published in ArXiv 2020. arXiv:2003.05004. DOI:
https://doi.org/10.48550/arXiv.2003.05004
Conrow E.H. American Institute of Aeronautics & Astronautics; Reston, FL, USA: 2003. Effective Risk Management; pp. 22–74.
Covello V.T., McCallum D.B., Pavlova M. Springer; New York, NY, USA: 1987. Effective Risk Communication: The Role and Responsibility of Government and Nongovernment Organizations. DOI:
https://doi.org/10.1111/risa.14006
Dohr A., Modre-Opsrian R., Drobics M., Hayn D., Schreier G. 2010. The Internet of Things for Ambient Assisted Living. 2010 Seventh International Conference on Information Technology: New Generations; pp. 804–809. DOI:
https://doi.org/10.1109/ITNG.2010.104
ertolaccini L., Solli P., Pardolesi A., Pasini A. An overview of the use of artificial neural networks in lung cancer research. Journal of Thoracic Disease. 2017;9:924–931. DOI:
https://doi.org/10.21037/jtd.2017.03.157.
Escobar G.J., Turk B.J., Ragins A., Ha J., Hoberman B., LeVine S.M. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J. Hosp. Med. 2016;11:S18–S24. DOI:
https://doi.org/10.1002/jhm.2652 .
esser-Edelsburg A., Shir-Raz Y., Hayek S., Sassoni-Bar Lev O. What does the public know about Ebola? The public’s risk perceptions regarding the current Ebola outbreak in an as-yet unaffected country. Am. J. Infect. Control. 2015;43:669–675. DOI:
https://doi.org/10.1016/j.ajic.2015.03.005
Greaves R., Bernardini S., Ferrari M., Fortina P., Gouget B., Gruson D. Key questions about the future of laboratory medicine in the next decade of the 21st century: a report from the IFCC-emerging technologies division. Clin. Chim. Acta. 2019;495:570–589. DOI:
https://doi.org/10.1016/j.cca.2019.05.021.
Gruson D., Helleputte T., Rousseau P., Gruson D. Data science, artificial intelligence, and machine learning: opportunities for laboratory medicine and the value of positive regulation. Clin. Biochem. 2019;69:1–7. DOI:
https://doi.org/10.1016/j.clinbiochem.2019.04.013
Haleem A., Javaid D.M., Khan I.H. Current status and applications of artificial intelligence (AI) in medical field: an overview. Current Medicine Research and Practice. 2019;9:231–237. DOI:
https://doi.org/10.1016/j.cmrp.2019.11.005 .
Hall R., Pasipanodya J., Swancutt M., Meek C., Leff R., Gumbo T. Supervised machine-learning reveals that old and obese people achieve low dapsone concentrations. CPT Pharmacometrics Syst. Pharmacol. 2017;6:552–559. DOI:
https://doi.org/10.1002/psp4.12208 .
Heinson A., Gunawardana Y., Moesker B., Hume C., Vataga E., Hall Y. Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. Int. J. Mol. Sci. 2017;18:312. DOI:
https://doi.org/10.3390/ijms18020312
Hinton G., Deng L., Yu D., Dahl G., Mohamed A., Jaitly N. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 2012;29:82–97. DOI:
https://doi.org/10.1109/msp.2012.2205597 .
Ho C.W.L., Soon D., Caals K., Kapur J. Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin. Radiol. 2019;74:329–337. DOI:
https://doi.org/10.1016/j.crad.2019.02.005.
ITN Two Studies Use SIRD Model to Forecast COVID-19 Spread. 2020. https://www.itnonline.com/content/two-studies-use-sird-model-forecast-covid-19-spread (Accessed 2 April 2020) DOI:
https://doi.org/10.1016/j.chaos.2021.111039
Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2:230–243. DOI:
https://doi.org/10.1136/svn-2017-000101
Jiang X., Coffee M., Bari A., Wang J., Jiang X. Towards an artificial intelligence framework for data- driven prediction of coronavirus clinical severity. CMC-Computers, Materials & Continua. 2020;63:537–551. DOI:
https://doi.org/10.32604/cmc.2020.010691 .
jordona K., Dossou P.-E., Junior J.C. Using lean manufacturing and machine learning for improving medicines procurement and dispatching in a hospital. Procedia Manufacturing. 2019;38:1034– 1041. DOI:
https://doi.org/10.1016/j.promfg.2020.01.189
Kellermann R., Biehle T., Fischer L. Transportation Research Interdisciplinary Perspectives. 2020. Drones for parcel and passenger transportation: a literature review; p. 100088. In Press corrected proof DOI:
https://doi.org/10.1016/j.trip.2019.100088
Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 2017;60:84–90. DOI:
https://doi.org/10.1145/3065386 .
Kulikowski C. Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting scientific inquiry and clinical art - with reflections on present AIM challenges. Yearbook of Medical Informatics. 2019 DOI:
https://doi.org/10.1055/s-0039-1677895.
Kuo, C.-C., Chang, C.-M., Liu, K.-T., Lin, W.-K., Chiang, H.-Y., Chung, C.-W., et al., 2019. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. Npj Digital Medicine, 2, 29. DOI:
https://doi.org/10.1038/s41746-019-0104-2
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents, 105924 DOI:
https://doi.org/10.1016/j.ijantimicag.2020.105924
Lakhani P., Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284:574–582. DOI:
https://doi.org/10.1148/radiol.2017162326 .
Liu, W., Cao, J., Yang, L., Xu, L., Qiu, X., & Li, J. (2016). AppBooster: Boosting the performance of interactive mobile applications with computation offloading and parameter tuning. IEEE Transactions on Parallel and Distributed Systems, 28(6), 1593-1606. DOI:
https://doi.org/10.1109/TPDS.2016.2624733.
Lo-Ciganic W.-H., Donohue J.M., Thorpe J.M., Perera S., Thorpe C.T., Marcum Z.A., Gellad W.F. Using machine learning to examine medication adherence thresholds and risk of hospitalization. Med. Care. 2015;53:720–728. DOI:
https://doi.org/10.1097/mlr.0000000000000394 .
Lundberg S.M., Nair B., Vavilala M.S. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering. 2018;2:749–760. DOI:
https://doi.org/10.1038/s41551-018-0304-0 .
Lundgren R.E., McMakin A.H. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2013. Risk Communication: A Handbook for Communicating Environmental, Safety, and Health Risks. DOI:
https://doi.org/10.1002/9781118645734
Luo J., Wu M., Gopukumar D., Zhao Y. Big data application in biomedical research and health care: a literature review. Biomedical Informatics Insights. 2016;8:BII.S31559. DOI:
https://doi.org/10.4137/bii.s31559 .
Mai M.V., Krauthammer M. Controlling testing volume for respiratory viruses using machine learning and text mining. AMIA annual symposium proceedings. AMIA Symposium. 2017;2016:1910– 1919 DOI:
https://doi.org/10.1101/2020.07.18.20156794
McLean, G., & Wilson, A. (2019). Shopping in the digital world: Examining customer engagement through augmented reality mobile applications. Computers in Human Behavior, 101, 210-224. DOI:
https://doi.org/10.1016/j.chb.2019.07.002
Mesar, T., Lessig, A., King, D.R., 2018. Use of drone technology for delivery of medical supplies during prolonged field care. Journal of Special Operations Medicine. 18, 34–35. DOI:
https://doi.org/10.55460/M63P-H7DM
Misawa M., Kudo S., Mori Y., Cho T., Kataoka S. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology. 2018;154:2027–2029.e3 DOI:
https://doi.org/10.1053/j.gastro.2018.04.003
Nuanmeesri, S. (2019). Mobile application for the purpose of marketing, product distribution and location-based logistics for elderly farmers. Applied Computing and Informatics. DOI:
https://doi.org/10.1016/j.aci.2019.11.001
oga A.W., Foster I., Kesselman C., Madduri R., Chard K., Deutsch E.W. Big biomedical data as the key resource for discovery science. J. Am. Med. Inform. Assoc. 2015;22:1126–1131. DOI:
https://doi.org/10.1093/jamia/ocv077
Perou C.M., Sorlie T., Eisen M.B., van de Rijn M., Jeffrey S.S. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. DOI:
https://doi.org/10.1038/35021093 .
Poljak M., Sterbenc A. Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clin. Microbiol. Infect. 2019;26:425–430. DOI:
https://doi.org/10.1016/j.cmi.2019.09.014.
Priye A., Wong S., Bi Y., Carpio M., Chang J., Coen M. Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal. Chem. 2016;88:4651–4660. DOI:
https://doi.org/10.1021/acs.analchem.5b04153.
Ratzan, S. C., Gostin, L. O., Meshkati, N., Rabin, K., & Parker, R. M. (2020). COVID-19: An Urgent Call for Coordinated, Trusted Sources to Tell Everyone What they Need to Know and Do. NAM Perspectives DOI:
https://doi.org/10.1080/10810730.2020.1894015
Rosser J.C., Vignesh V., Terwilliger B.A., Parker B.C. Surgical and medical applications of drones: a comprehensive review. Journal of the Society of Laparoendoscopic Surgeons. 2018;22 . DOI:
https://doi.org/10.4293/jsls.2018.00018.
Saria S., Koller D., Penn A. Proceedings of Neural Information Processing Systems (NIPS) Predictive Models in Personalized Medicine. 2010. Learning individual and population level traits from clinical temporal data. (Whistler) DOI:
https://doi.org/10.1377/hlthaff.2014.0041
Sorlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. 2001;98:10869–10874. DOI:
https://doi.org/10.1073/pnas.191367098
STAT Surge in patients overwhelms telehealth services amid coronavirus pandemic. 2020. https://www.statnews.com/2020/03/17/telehealth-services-overwhelmed-amid-coronavirus- pandemic/ (Accessed 20 March 2020) DOI:
https://doi.org/10.2196/19264
Stevic Z., Pamucar D., Puska A., Chatterjee P. Sustainable supplier selection in healthcare industries using a new MCDM method: measurement alternatives and ranking according to COmpromise solution (MARCOS) Comput. Ind. Eng. 2019;140:106231. DOI:
https://doi.org/10.1016/j.cie.2019.106231
Vacca A., Onishi H. Drones: military weapons, surveillance or mapping tools for environmental monitoring? The need for legal framework is required. Transportation Research Procedia. 2017;25:51–62. DOI:
https://doi.org/10.1016/j.trpro.2017.05.209.
Van Bavel J.J., Baicker K., Boggio P., Capraro V., Cichocka A., Crockett M. Using social and behavioural science to support COVID-19 pandemic response. PsyArXiv preprints. 2020 DOI:
https://doi.org/10.31234/osf.io/y38m9
Wahl B., Cossy-Gantner A., Germann S., Schwalbe N.R. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob. Health. 2018;3 DOI:
https://doi.org/10.1136/bmjgh-2018-000798.
Wan, S., Zhao, Y., Wang, T., Gu, Z., Abbasi, Q. H., & Choo, K. K. R. (2019). Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things. Future Generation Computer Systems, 91, 382-391. DOI:
https://doi.org/10.1016/j.future.2018.08.007
Yan H., Xu L.D., Bi Z., Pang Z., Zhang J., Chen Y. An emerging technology - wearable wireless sensor networks with applications in human health condition monitoring. Journal of Management Analytics. 2015;2:121–137. DOI:
https://doi.org/10.1080/23270012.2015.1029550.
Yuan M., Yin W., Tao Z., Tan W., Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020;15 DOI:
https://doi.org/10.1371/journal.pone.0230548 .
Zafeiris D., Rutella S., Ball G.R. An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Computational and Structural Biotechnology Journal. 2018;16:77–87. DOI:
https://doi.org/10.1016/j.csbj.2018.02.001
Zeng X., Luo G. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection. Health Information Science and Systems. 2017;5:2. DOI:
https://doi.org/10.1007/s13755-017-0023-z .
Zhang L., Li H., Chen K. Effective risk communication for public health emergency: reflection on the COVID-19 (2019-nCoV) outbreak in Wuhan, China. Healthcare. 2020;8:64. DOI:
https://doi.org/10.3390/healthcare8010064
Zoroja J., Merkac Skok M., Pejic Bach M. 2014. E-Learning Implementation in Developing Countries: Perspectives and Obstacles. Online Tutor 2.0: Methodologies and Case Studies for Successful Learning. DOI:
https://doi.org/10.4018/978-1-4666-5832-5.ch004
Send comment about this article