The Optimal Design of HVDC Transmission Lines for the Improvement of Reactive Power Distribution Using Genetic Algorithm

Document Type : Original Article

Author

Department of Electrical and Computer Engineering, Vahdat Institute of Higher Education, Torbat-e Jam, Razavi Khorasan Province, Iran.

Abstract

The proposed control scheme in this paper is based on the design of an optimal load distribution of reactive power for High-Voltage Direct-Current systems (HVDCs). The purpose is to monitor and implement appropriate operations to create a balance in the power and eliminate the voltage or current that has exceeded the permissible limit. Two-terminal HVDC transmission lines are of the most important elements of the power system. The optimization of reactive power distribution for power systems is defined based on the minimization of power loss under equal and unequal constraints. The problem of optimizing the reactive power distribution in integrated AC-DC power systems in the form of HVDC lines is generalized with regard to the control specifications for power transmission. In this paper, the problem is solved using Genetic Optimization Algorithm (GA). The validation, efficiency and the effectiveness of the proposed method are measured by comparing the results of the GA and those obtained by previous researches. Results indicate the effectiveness of the proposed method in the optimization of power distribution and the design of HVDC lines.

Keywords


Ahmed, H. M. A., Eltantawy, A. B., & Salama, M. M. A. (2017). A generalized approach to the load flow analysis of AC–DC hybrid distribution systems. IEEE Transactions on Power Systems, 33(2), 2117–2127. DOI:10.1109/TPWRS.2017.2720666
Aouini, R., Marinescu, B., Kilani, K. Ben, & Elleuch, M. (2015). Synchronverter-based emulation and control of HVDC transmission. IEEE Transactions on Power Systems, 31(1), 278–286. DOI:10.1109/PESGM.2017.8274585
Ayan, K., & Kılıç, U. (2016). Optimal power flow of two-terminal HVDC systems using backtracking search algorithm. International Journal of Electrical Power & Energy Systems, 78, 326–335. DOI:10.1016/j.ijepes.2015.11.071
Feng, W., Tjernberg, L. B., Mannikoff, A., & Bergman, A. (2013). A new approach for benefit evaluation of multiterminal VSC–HVDC using a proposed mixed AC/DC optimal power flow. IEEE Transactions on Power Delivery, 29(1), 432–443. DOI:10.1109/TPWRD.2013.2267056
Fernández-Pérez, J.-C., Cerezo, F. M. E., & Rodríguez, L. R. (2017). On the convergence of the sequential power flow for multiterminal VSC AC/DC systems. IEEE Transactions on Power Systems, 33(2), 1768–1776. DOI:10.1109/TPWRS.2017.2720740
Feshki Farahani, H., & Rashidi, F. (2017). An improved teaching-learning-based optimization with differential evolution algorithm for optimal power flow considering HVDC system. Journal of Renewable and Sustainable Energy, 9(3), 35505. DOI:10.1063/1.4989828
Houck, C. R., Joines, J., & Kay, M. G. (1995). A genetic algorithm for function optimization: a Matlab implementation. Ncsu-Ie Tr, 95(09), 1–10. DOI: 10.4236/jcc.2019.77013
Kundur, P., Balu, N. J., & Lauby, M. G. (1994). Power system stability and control (Vol. 7). McGraw-hill New York. DOI: 10.4236/jcc.2019.77013
Lenin, K., Reddy, B. R., & Suryakalavathi, M. (2015). Upgraded harmony search algorithm for solving optimal reactive power dispatch problem. International Journal of Mathematics Research, 4(1), 42–52. Doi:10.18488/journal.24/2015.4.1/24.1.42.52  
Li, Y., Wang, Y., & Li, B. (2013). A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow. International Journal of Electrical Power & Energy Systems, 52, 25–33. DOI:10.1016/j.ijepes.2013.03.016
Prasad, D., Mukherjee, A., & Mukherjee, V. (2017). Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem. Chaos, Solitons & Fractals, 103, 90–100. DOI:10.1016/j.chaos.2017.05.037
Rajan, A., & Malakar, T. (2015). Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. International Journal of Electrical Power & Energy Systems, 66, 9–24. DOI:10.1016/j.ijepes.2014.10.041
Sanchez, S., Garces, A., Bergna-Diaz, G., & Tedeschi, E. (2018). Dynamics and stability of meshed multiterminal hvdc networks. IEEE Transactions on Power Systems, 34(3), 1824–1833. DOI:10.1109/TPWRS.2018.2889516
Sayah, S. (2018). Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Applied Soft Computing, 73, 591–606. DOI:10.1016/j.asoc.2018.08.038
Sayah, S., & Hamouda, A. (2019). Optimal power flow solution of integrated AC‐DC power system using enhanced differential evolution algorithm. International Transactions on Electrical Energy Systems, 29(2), e2737. DOI:10.1002/etep.2737
Sreejaya, P., & Iyer, S. R. (2010). Optimal reactive power flow control for voltage profile improvement in AC-DC power systems. 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, 1–6. IEEE. DOI:10.3390/en17030749
Taghavi, R., & Seifi, A. (2012). Optimal reactive power control in hybrid power systems. Electric Power Components and Systems, 40(7), 741–758. DOI:10.1080/15325008.2012.658597
Yapıcı, H., & Çetinkaya, N. (2016). Reactive Power Optimization with Chaotic Firefly Algorithm and Particle Swarm Optimization in a Distribution Subsystem Network. Iraqi Journal for Electrical and Electronic Engineering, 12(1), 71–78.  DOI:10.37917/ijeee.12.1.7
CAPTCHA Image