Khemphila and V. Boonjing. (2010). Comparing Performances of Logistic Regression, Decision trees,
and Neural Networks for Classifying Heart Disease Patients. 2010 IEEE International
Conference on Computer Information Systems and Industrial Management Systems, pp. 193199.
Buchan, K., Filannino, M., Uzuner, O. (2017). Automatic prediction of coronary artery disease from
clinical narratives. Journal of biomedical informatics, Vol.72, pp.23-32.
Burges C. (1998). A tutorial on support vector machines for pattern recognition1. Data Mining and
Knowledge Discovery, vol.2, pp. 121 – 167.
Center for Machine Learning and Intelligent Systems. Cleveland heart disease data details, Available
from: URL http://archive.ics.uci.edu/ml/machine-learningdatabases/ heart-disease/heart disease.
Names
Cortes C. Vapnik V. (1995). Support-vector networks. Machine Learning, 20, pp. 273–297.
D. Goldberg, K. Deb, B. Korb. (1989). Messy genetic algorithms: motivation, analysis, and first results,
Complex Syst. 3, pp.493–530.
Davari Dolatabadi, A., Esmael Zadeh, S., Mohammadzadeh, B. (2017). Automated diagnosis of
coronary artery disease (CAD) patients using optimised SVM. Vol.138, pp. 117-126.
G. Sanchita, D. Anindita, et al. (2016). Evolutionary algorithm based techniques to handle big data, in:
P.B.S. Mishra, et al. (Eds.), Techniques and Environments for Big Data Analysis: Parallel,
Cloud, and Grid Computing, Springer Interna- tional publishing: Cham, pp. 113–158.
Huang T. Kecman V. Kopriva I. (2006). Kernel based algorithms for mining huge data sets, supervised,
semi-supervised, and unsupervised learning, Springer-Verlag, Berlin, Heidelberg.
Khosravanian A, Ayat SS. (2015). Presenting an intelligent system for diagnosis of coronary heart
disease by using Probabilistic Neural Network. Health Inf Manage; 12(1), pp.3-13.
R. Jensen, Q. Shen. (2003). Finding Rough Set Reducts with Ant Colony Optimiza- tion, in:
Proceedings of the 2003 UK Workshop on Computational Intelligence, pp. 15–22.
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. (1983). Optimization by simulated annealing, Science 220
(4598), pp.671–680.
S. Mirjalili, A. Lewis. (2016). The whale optimization algorithm, Adv. Eng. Softw. Vol. 95, pp. 51–67.
S. Pouriyeh, S. Vahid, G. Sannino, G. D. Pietro and H. Arabnia, J. Gutierrez. (2017). A Comprehensive
Investigation and Comparison of Machine Learning Techniques in the Domain of Heart
Disease,” IEEE Symposium on Computers and Communication.
S. Xu, Z. Zhang, D. Wang, J. Hu, X. Duan and T. Zhu. (2017). Cardiovascular Risk Prediction Method
Based on CFS Subset Evaluation and Random Forest Classification Framework. International
Conference on Big Data Analysis.
V. Vapnik and A. Chervonenkis. (1991). The necessary and sufficient conditions for consistency in the
empirical risk minimization method. Pattern Recognition and Image Analysis, vol. 1, no. 3, pp.
283-305.
Wong, N.D. (2014). Epidemiological studies of CHD and the evolution of preventive cardiology. Nat.
Rev. Cardiol. Vol.11, pp.276-289.
Send comment about this article