منابع
ـ Baumer, E. P., Sinclair, J., & Tomlinson, B. (2010, April). America is like Metamucil: fostering critical and creative thinking about metaphor in political blogs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1437-1446). ACM.
ـ Charalampakis, B., Spathis, D., Kouslis, E., & Kermanidis, K. (2016). A comparison between semi-supervised and supervised text mining techniques on detecting irony in greek political tweets. Engineering Applications of Artificial Intelligence, 51, 50-57.
ـ Evans, B. M., Kairam, S., & Pirolli, P. (2010). Do your friends make you smarter?: An analysis of social strategies in online information seeking. Information Processing & Management, 46(6), 679-692.
ـ Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with applications, 40(16), 6266-6282.
ـ Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment analysis methods. ACM Computing Surveys (CSUR), 49(2), 28.
ـ Lahuerta-Otero, E., & Cordero-Gutiérrez, R. (2016). Looking for the perfect tweet. The use of data mining techniques to find influencers on Twitter. Computers in Human Behavior, 64, 575-583.
ـ Li, J., Li, Q., Khan, S. U., & Ghani, N. (2011, June). Community-based cloud for emergency management. In 2011 6th International Conference on System of Systems Engineering (pp. 55-60). IEEE.
ـ Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining text data (pp. 415-463). Springer, Boston, MA.
ـ Saif, H., He, Y., Fernandez, M., & Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing & Management, 52(1), 5-19.
ـ Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38.
ـ Sorensen, L. (2009, May). User managed trust in social networking-Comparing Facebook, MySpace and Linkedin. In 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (pp. 427-431). IEEE.
ـ Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558.
ـ Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. (2011). Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories, Technical Report HPL-2011, 89.
Send comment about this article