Present a new method for increasing the intelligence and speed of the Firefly algorithm

Document Type : Original Article

Authors

1 MSc in Computer Engineering, Faculty of Engineering, Azad University, Lorestan, Iran

2 Ph.D Student. in Information Technology Management, Islamic Azad University, Science and Research Branch of Tehran, Tehran, Iran

Abstract

Today, Most important issues in the industry of non-linear and multi-parametric are considered optimization problems. On the other hand, the attractiveness of the behavior and interaction of animals has led the computer scientists, inspired by these interactions to create algorithms for optimization problems, which in many cases provide quick and acceptable solutions to complex problems. One of the propagation intelligence algorithms is firefly algorithm, which is bace on the exposure of luminous worms and their absorption into more light. The main problem with algorithms Such as firefly is that takes a lot of time to convege the desired answers. So if the number of firefly worms is more than 128, their run time with CPU is 2.5820 milliseconds but with using GPU 1.5090 milliseconds. In this paper, we intend to use a pc graphics unit to provide a version of the firefly algorithm that converages to the desired solutions more quickly while maintaining accuracy.

Keywords

Main Subjects


  1. A.Shukla, R. a. (2010). Swarm Intelligence. in Towards Hybrid and Adaptive Computing, 187-207. DOI:10.1007/978-3-642-14344-1

    A.V Husselmann, a. K. (2012). Parallel Parametric Optimisation with Firefly Algorithms on . Graphical Processing Units, 1-7. Doi: 10.3390/app9010007

    j.d.Owens, M. H. (2008). GPU Computing. Proceedings of the IEEE, 879-899. DOI:10.1109/GreenCom-CPSCom.2010.143

    j.Kennedy, R. E. (1995). Particle swarm optimization. in Neural Networks, Perth, 1942-1948. DOI:10.1007/s12046-014-0244-7

    G.Agarwal, S. (2013). Evaluation performance study of Firefly algorithm, particle swarm optimization and artificial bee colony algorithm for non-linear mathematical optimization functions. 1-8. DOI:10.1109/ICCCNT.2013.6726474

    G.Zhua, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization. pp. 3166-3173. doi:10.1016/j.amc.2010.08.049

    M.Imran, R. H. (2013). An Overview of Particle Swarm Optimization Variants. Procedia Engineering, 491-496. DOI:10.1016/j.proeng.2013.02.063

    p.Pospichal, j. J. (2010). Parallel Genetic Algorithm on the CUDA Architecture. Applications of Evolutionary Computation, 442-451. DOI:10.1007/978-3-642-12239-2_46

    1. Poli, J. K. (2007). Particle swarm optimization. Swarm Intelligence, 33-57. DOI:10.1007/s11721-007-0002-0

    S.X.Wu, a. W. (2010). The use of computational intelligence in intrusion etection systems A review. 1-35. DOI:10.1016/j.jnca.2012.08.007

    S-C. Chu, H.-C. H.-S. (2011). Overview of Algorithms for Swarm Intelligence,". in Computational Collective Intelligence, 28-41. DOI:10.1007/978-3-642-23935-9_3

    x.s.yang, x. H. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence. pp. 35-50. DOI:10.1007/978-981-15-0306-1_1

    x.Yang. (2010). Engineering optimization: an introduction with metaheuristic applications. John Wiley & Sons. DOI:10.1002/9780470640425

     X.S.Yang. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization. 65-74. DOI:10.1007/978-3-642-12538-6_6

    X.Yang. (2013). Bat Algorithm: Literature Review and Applications. 141–149. DOI:10.1504/IJBIC.2013.055093

    Z.Yao, a. J. (2011). A quantitative performance analysis model for GPU architectures. In High Performance Computer Architecture (HPCA), 382-393. DOI:10.1109/HPCA.2011.5749745

CAPTCHA Image