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Technology commercialization is a complex and multidimensional
process that requires coordination among product development, resource
allocation, and alignment with market needs. Traditional mass
production models are unable to respond effectively to dynamic
environments and rapid market changes, and focusing solely on
production volume often results in low economic value. This study aims
to develop an intelligent framework for technology commercialization
by integrating System Dynamics (SD), Agent-Based Modeling (ABM),
and Artificial Intelligence algorithms, including Genetic Algorithms and
Reinforcement Learning. The proposed model consists of three main
layers: the data and input layer, which encompasses investment
indicators, R&D metrics, and market data; the processing and simulation
layer, which simulates actor behaviors, feedback loops, and resource
allocation; and the output and decision-making layer, which provides
key performance indicators including Economic Value (EV), Market
Adoption (A), Profitability (P), and Customer Satisfaction (CS). The
simulation examined three primary scenarios: mass production, value-
oriented, and hybrid. Results indicated that the value-oriented scenario
generates the highest economic value, market adoption, and customer
satisfaction, while the mass production scenario demonstrates limited
performance and low flexibility. The hybrid scenario offers a balance
between profitability and adaptability and can serve as an intermediate
approach for organizations that cannot fully transition to a value-
oriented model. This study demonstrates that applying Al in modeling
and simulation of the technology commercialization process enables the
prediction of scenario outcomes and the optimization of resource
allocation, and facilitates the transition from mass production to
economic value creation. The findings provide organizational decision-
makers and technology policymakers with a powerful tool for designing
innovative strategies and reducing the risk of failure.
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1) Introduction

In today’s world, technology commercialization is a key driver of economic growth and sustainable
development. Knowledge-based economies increasingly rely on translating laboratory innovations into
market success. However, commercialization is inherently complex, costly, and risky. Many
technologies fail due to weaknesses in this process, despite strong scientific potential. This highlights
the need for modeling and simulating commercialization processes to enable informed decision-making
before market entry (Zhang et al., 2025). Classical commercialization models (linear, interactive, and
network models) primarily focus on technology transfer from R&D to market. While helpful for general
understanding, they lack the flexibility to reflect real-world dynamics and uncertainties (Zhang et al.,
2025). Challenges such as market demand fluctuations, rapid technological changes, and competitive
pressures have diminished the effectiveness of these traditional models (Callaghan et al., 2025). The rise
of Industry 4.0 and digitalization offers new opportunities for commercialization, notably through
Artificial Intelligence (AI). Al can analyze complex data, forecast market behavior, and optimize
management decisions. Al algorithms, such as neural networks, genetic algorithms, and swarm
optimization, can reduce risk and improve decision accuracy across various domains (Li et al., 2024).
Adopting these algorithms can enhance speed, precision, and flexibility in the commercialization
process (Fuchs et al., 2024; Kemp et al., 2023). A fundamental shift in innovation involves moving from
mass production to creating economic value. While traditional approaches focused on increasing volume
and reducing costs, the new economy emphasizes quality, innovation, complementary services, and
customer experience. This paradigm shift underscores the importance of intelligent commercialization
modeling, allowing managers and policymakers to analyze the impact of different strategies (Leppénen
et al., 2023; Ma et al., 2025). Therefore, this research aims to develop an intelligent simulation model
for technology commercialization. It will model commercialization stages and leverage Al algorithms
to identify optimal pathways for transitioning from mass production to value creation. The primary goal
is to demonstrate how the combination of conceptual modeling, agent-based simulation, and Al
algorithms can act as a decision-making tool for innovation managers and technology policymakers
(Fachar et al., 2024; Moser et al., 2023).

Technology commercialization is a complex, multi-stage process aimed at converting knowledge
and innovation into economic products and services. Traditional linear models execute development,
production, and marketing stages sequentially, overlooking feedback between them. This leads to
inefficiency, resource waste, and an inability to respond to market changes (Loske & Klumpp, 2021).
Consequently, research has shifted toward dynamic and intelligent models that consider interactions
between stages, economic value assessment, and customer satisfaction (Peng et al., 2022). Network and
ecosystem approaches have emerged, emphasizing collaboration among universities, industry, and
government in innovation (Lindgreen et al., 2020). These models improve technology transfer and
reduce failure risk through cooperation and information flow, but still lack precision in predicting
outcomes and optimizing resource allocation (Frances et al., 2020). Therefore, the need for intelligent,
predictive frameworks is greater than ever (McAfee et al., 2017).

Recent studies identify modeling and simulation as key tools for analyzing complex
commercialization processes. The two main approaches, System Dynamics (SD) for analyzing feedback
loops, and Agent-Based Modeling (ABM) for studying agent behavior and network interactions,
complement each other and enhance strategic decision-making and resource allocation (Hosseini &
Scraf, 2018). Although this integration requires accurate data and heavy computation, it enables
organizations to analyze scenarios and forecast market outcomes (Parker et al., 2016).

Finally, the integration of Al and evolutionary algorithms, such as Genetic Algorithms (GA) and
Reinforcement Learning (RL), has opened new horizons. These algorithms learn from historical data to
optimize resource allocation, determine optimal market entry timing, and analyze various scenarios (Lin
et al., 2025). Combining Al with dynamic and agent-based modeling enhances flexibility, improves
strategic decisions, and strengthens economic value creation in the commercialization process (Zhang
et al., 2025).
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2) Research

Background

The integration of Al and evolutionary algorithms into technology commercialization processes
enhances prediction accuracy, optimizes resource allocation, and enables organizations to make optimal
strategic and operational decisions. This leads to sustainable competitive advantage and the creation of
real economic value (Zhang et al., 2018).

Table 1) Comparison of Research in Technology Commercialization

R Model Used Advantages Limitations GG
Year Evaluated
Parker et al. || Linear and Simple and understandable Inflexible in complex || Investment, time
(2016) Staged p environments to market

Fonches et al. |[Network and|| University-industry-government L1'm1‘ted scenario Player'
. . . . prediction, no optimal collaboration,
(2020) Ecosystem interaction, risk reduction . . .
resource allocation innovation
Loske & SD and System behavior analysis, complex L.ac.ks 1nte11.1 gent Economic value,
Klumpp . . decision-making and market
ABM interactions Lo
(2021) resource optimization acceptance
. . Does not fully cover
Peng et al. SD + GA Optimal resource allqcatlon, customer satisfaction and|| ROI, NPV, EV
(2022) scenario analysis . .
economic value creation
Comprehensive scenario analysis, o
This Stud SD + ABM || resource optimization, intelligent leltigéﬁ:;iil_ world EV, NPV, ROI,
Y 1+ GA +RL decision-making, focus on economic . . P, A, CS
. . implementation
value and customer satisfaction
Table 1 shows that prior research has been limited to linear and ecosystem models, lacking

integration between System Dynamics (SD), Agent-Based Modeling (ABM), and Al algorithms. The
proposed model, by combining SD, ABM, GA, and RL, enables accurate simulation of scenarios and
resource optimization with a focus on economic value creation.

Research Gaps and Innovation of This Study

Despite

recent advances in modeling and simulating technology commercialization processes, three

key gaps have been identified in existing studies:

1.

Incomplete Model Integration: Most studies use either SD simulation, Agent-Based
Modeling (ABM), or Al-based optimization (GA, RL) in isolation. These partial
approaches cannot simultaneously analyze systemic interactions, individual agent
behavior, and resource optimization.

Limited Focus on Economic Value and Customer Satisfaction: Many existing models focus
solely on increasing production volume, reducing costs, or operational efficiency,
neglecting critical metrics, such as economic value creation, sustainable profitability, and
customer satisfaction. This limitation leads to suboptimal strategic decisions and hinders
the transition to a value-driven model (Shi et al., 2016; Seo et al., 2016).

Lack of Strategic Scenario Simulation in High-Uncertainty Environments: Prior research
often fails to simulate multiple scenarios under high uncertainty, market changes, and
environmental risks. This deficiency prevents organizations from accurately predicting the
outcomes of different strategies and making data-driven, well-analyzed management
decisions (Booranakittipinyo et al., 2024).
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Table 2) Research Gaps and Innovations of the Present Study

Research Gap || Explanation || Innovation of the Present Study
Most studies use SD, ABM, or Three-layer model: SD + ABM + G At
Incomplete Model evolutionary algorithms (GA, RL) RL, enabling simultaneous simulation of
Integration fyalg ’ systemic feedback, agent behavior, and

in isolation.

resource optimization.

Limited Focus on
Economic Value and
Customer Satisfaction

Prior models emphasize cost
reduction and production volume,
ignoring value creation and
customer satisfaction.

Focus on economic value (EV), market
acceptance (A), profitability (P), and
customer satisfaction (CS) to support

sustainable, value-driven decisions.

Lack of Strategic Scenario
Simulation in High-
Uncertainty
Environments

Inability to simulate multiple
scenarios under uncertainty,
market shifts, and environmental
risks.

Comprehensive scenario analysis with
outcome prediction and resource optimization
in dynamic, uncertain environments.

Limited Market Behavior
Analysis

Complex interactions between
players and customers are not fully
simulated.

ABM for simulating non-linear market
and customer behavior to capture real-
world dynamics.

Limited Intelligent
Decision-Making

Most models lack adaptive,

intelligent algorithms.

Use of Reinforcement Learning (RL) for

dynamic, optimal decision-making.

Key Innovations of the Present Study

This research addresses these gaps through a three-layer intelligent model, offering the following

innovations:

Integration of SD, ABM, and Al Algorithms: The proposed model enables simultaneous

simulation of systemic feedback loops, agent behavior, and resource optimization, enabling
a comprehensive and realistic analysis of technology commercialization.

Focus on Economic Value and Customer Satisfaction: Unlike traditional models, it

includes key metrics economic value (EV), market acceptance (A), profitability (P), and
customer satisfaction (CS), enabling organizations to make strategic decisions based on
sustainable value creation and customer-centric outcomes.

Strategic Scenario Simulation in Uncertain Environments: The model can simulate

multiple operational scenarios in dynamic, unpredictable environments, offering
sensitivity analysis and risk assessment to identify optimal pathways from mass
production to economic value creation (Ngu et al., 2023; Tan et al., 2021).

Practical Decision-Making Tool: This intelligent framework assists managers and

policymakers in optimizing resource allocation, market entry timing, and innovation
strategies, thereby reducing project failure risk.

3) Conceptual Model of the Research

The proposed conceptual model for smart technology commercialization is based on a three-layer
framework designed to optimize the transition from mass production to economic value creation. It
systematically analyzes the interactions among resources, data, strategic decisions, and outcomes,
enabling simulation and optimization of the commercialization process.

The model integrates:

(e.g., firms, customers, regulators).

System Dynamics (SD): To capture systemic feedback loops and long-term behavior.
Agent-Based Modeling (ABM): To simulate non-linear interactions among market agents
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o Al Algorithms (GA + RL): For resource optimization and intelligent, adaptive decision-
making.

This integrated structure enables comprehensive scenario analysis, risk assessment, and value-

driven strategic planning, supporting organizations to navigate uncertainty and maximize economic

value and customer satisfaction.

Figure 1) Conceptual Model of the Research

4 )

4 )

Layer 1: Inputs / Data Layer 2 Procqssing and L 3: Outouts /
1. Investment and D ];lg’ce;l;io;l-MuaIl):ilnfg .
financial resources 1. Feedback loop LB - Value (EV Strateglc
2. R&D and product simulation or SD - Economic Value (EV) Decision-Making
development data 2. Agent and customer 2. Market Acceptance and Optimal
. . behavior simulation or (MA) .
3. Market information and A o Scenario
customer needs BM 3. Profitability (P) .
4.Weights of indicators 3. Resource allocation and 4. Customer Satisfaction Selection
strategy optimization or (CS)
GA/RL

_ A

- AN J

1. Data and Input Layer
This layer includes all the data and indicators required to initiate the simulation process:

o Investment and financial resources indicators: The amount of budget allocated to research,
development, and marketing. These indicators determine how much resources are
consumed at different stages of commercialization.

e R&D and product development data: Includes information on technology, its maturity
level, commercialization potential, and development time.

e Market and customer needs data: Includes customer behavior analysis, market size,
competitors, and future trends, which are critical for predicting product acceptance.

e Weights of indicators and priorities: Weighting of metrics such as economic value,
profitability, customer satisfaction, and market acceptance, which are essential for strategic
decision-making.

Objective of the data layer: provides accurate and high-quality inputs for simulation and intelligent
algorithms, ensuring that the outputs reflect real-world market and technological realities.

2. Processing and Simulation Layer
This layer is the core of the conceptual model and consists of three main components:
1. Dynamic Systems Simulation (SD)

Includes analysis of feedback loops between production, investment, and market acceptance.
Models the evolution of indicators over time, identifying critical points and long-term system behavior
patterns.
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2. Agent-Based Modeling (ABM)

Simulates the behavior of different agents: customers, competitors, business partners, and
regulatory bodies. It models nonlinear interactions and agents’ non-deterministic decisions, predicting
the impact of different strategies on market acceptance and customer satisfaction.

3. Artificial Intelligence Algorithms (GA and RL)

o Genetic Algorithm (GA): Optimizes resource allocation across activities, selects the
optimal combination of projects, and market entry strategies.

e Reinforcement Learning (RL): Develops dynamic strategies by learning from
environmental feedback and predicted simulations.

Ultimate goal: Maximize economic value, profitability, and customer satisfaction.

3. Output and Decision-Making Layer
The model’s outputs include key indicators guiding strategic decision-making:

e Economic Value (EV): The primary metric reflecting the real value creation of technology
in the market.

o Market Acceptance (A): The level of customer adoption of a new product or technology.

e Profitability (P): Financial performance of technology commercialization, including ROI
and net profit.

e Customer Satisfaction (CS): A measure of customer experience and final satisfaction with
the product or service.

Outputs are presented as tables, time-series graphs, and scenario analyses, enabling organizations
to compare different commercialization scenarios, optimize resource allocation, and make strategic
decisions with minimal risk and maximum economic value.

4. Research Methodology

This study is applied and developmental in purpose and model-based, hybrid simulation in method. The
core rationale for selecting this approach is that technology commercialization is a complex, dynamic,
and multi-agent phenomenon, involving nonlinear interactions among investors, universities, industries,
government, and customers. Traditional linear and static methods cannot accurately represent the
realities of this process. Therefore, approaches that capture both system dynamics and heterogeneous
agent behavior are essential.

To this end, the research employs Dynamic Systems Modeling to analyze feedback loops, resource
flows, and variable changes over time. This enables macro-level analysis of trends, policies, and the
impact of managerial decisions on key commercialization indicators (e.g., economic value, profitability,
market acceptance).

In parallel, Agent-Based Modeling (ABM) is used to simulate the behavior of diverse agents and
their complex interactions. ABM captures agent heterogeneity, independent decisions, and network
relationships within the innovation ecosystem.

The integration of SD and ABM is logical: SD alone is limited in modeling individual interactions
and agent diversity, while ABM cannot fully capture macro-level system dynamics and feedbacks.
Combining them enables a comprehensive and accurate model.

Next, to optimize resource allocation and analyze strategic scenarios under uncertainty, Al
algorithms, Genetic Algorithm (GA) and Reinforcement Learning (RL), are employed:

e GA searches the decision space to find the optimal resource mix in the commercialization
process.

e RL learns from environmental feedback to identify the best market entry strategies and
value-creation policies.
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Finally, the model outputs include key metrics: Economic Value (EV), Market Acceptance (A),
Profitability (P), and Customer Satisfaction (CS). These are derived through simulations across different
scenarios (mass production, value-driven, hybrid) and form the basis for research analysis.

Research Method and Rationale

This study employs modeling and simulation to analyze the technology commercialization process
from mass production to economic value creation. The rationale for this approach lies in the complex,
dynamic, and nonlinear nature of the process, involving interactions among diverse agents (universities,
industry, government, investors, customers), feedback loops, and environmental uncertainties.

To address this, the research combines three major tools:

1. Dynamic Systems Simulation (SD) — Models feedback loops, resource dynamics, and
system behavior over time.

2. Agent-Based Modeling (ABM) — Simulates heterogeneous agent behavior in the
innovation ecosystem and their interactions.

3. Evolutionary Algorithms (GA) and Reinforcement Learning (RL) — Serve as optimization
engines for resource allocation, strategic decision-making, and outcome prediction across
scenarios.

Therefore, the research logic rests on integrating descriptive models (SD and ABM) with
optimization models (Al-based) to not only represent real-world system behavior but also identify
optimal decisions for maximizing economic value and customer satisfaction. The methodology,
implementation steps, and research findings have been reviewed and refined using Al tools, based on
proposed recommendations.

Statistical Population (Research Scope)

The statistical population in this research comprises technology firms, R&D units, universities,
incubators, investors, and relevant governmental bodies involved in technology commercialization. This
selection is justified as technology commercialization is an inherently multi-actor process, where
interactions among these stakeholders critically determine success or failure.

The population segments include:

1. Technology Firms/Startups: Providing data on R&D costs, time-to-market, and sales
figures.

2. Universities/Research Centers: Supplying information on knowledge generation, patent
counts, and technological collaborations.

3. Venture Capitalists: Offering data on financial metrics and resource allocation strategies.

End Customers: Providing data related to Customer Satisfaction (CS) and technology
adoption rates.

Crucially, this population serves as the data source and real-world context that grounds the
mathematical models (formulas) in practical applicability. Without this population, the formulas would
remain purely theoretical frameworks. The formulas used in the simulation are presented in Table 3.

Table 3) Formulas of the Conceptual Model

| Equation ” Formula || Description |

. Net economic value created from
Economic Value e .

EV=R-C commercialization (Revenue minus
(EV)
Cost).
Market _ Adopters Rate of technology adoption within the

Acceptance (A) " Total Population target market.

- (R-0) Profitability index or Return on
Profitability (P) P= C Investment (ROI), indicating the
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Equation ” Formula || Description
efficiency of the commercialization
process.
Customer Zm (Qi- W) Weighted satisfaction index based on
Satisfaction €s =2z product/service quality (Q;) and the
(CS) i=1 Wi importance weight (W;) of each criterion.
Resource ) Optimization of resource allocation
Allocation (RA)|| 28 IHAX g ( M. EVY(R f]I) = RA across n projects using Genetic
Algorithm (GA) or other Al methods.
b = Sum of discounted rewards in
RL Reward tiki 1T T Z =G Reinforcement Learning (RL) for
k=0 decision-making under uncertainty.
. n Fitness function for optimizing strategic
F?lﬁcﬂl;zis;) F(W) = Z (W;-S) index weights (W;), where S;is the score
=1 of the i-th index.
System . . .
. Change in stock variables in the SD
Dynamic Out flows — Im flows — AX :
Feedback (AX) model (Inflows minus Outflows).
Bass diffusion model to simulate
i dN(t N(t N(t . .
AdOPthﬂ (1) — pﬁ [M—-N@®]+q Q [M technology adoption over time (p:
Dynamics (Bass dt M M . . ffici LT
Model) — N Innovation coetticient, q: imitation
coefficient, M: market potential).

Note: These formulas will all be utilized within the simulation environment.

5. Research Findings

The current model possesses several key outputs that evaluate the performance of the technology
commercialization process. The main outputs include Economic Value (EV), Market Acceptance (A),
Profitability (P), and Customer Satisfaction (CS), calculated based on three scenarios: Mass Production,
Value-Driven, and Hybrid. Analytical outputs involve comparing EV across scenarios, sensitivity
analysis of financial and human resources, and examining the influence of customer satisfaction on
market acceptance. Al and optimization outputs include the results of GA for finding the optimal fitness
value, the RL learning path, and the risk index under different scenarios.

Finally, the integrated and final outputs display the overall model performance in terms of the EV
and CS combination, compare the three scenarios based on all indicators, and provide a strategic
decision matrix suggesting the best operational approach.

Table 4) Comparison of Economic Value, Profitability, Market Acceptance, and Customer

Satisfaction
; Mass Value- . c
Indicator Production || Driven Hybrid Summary of Analysis
EV is the highest in Value-Driven; Mass Production is the lowest;
EV 330 450 383 Hybrid is moderate and stable.
Market Acceptance is the highest in Value-Driven and the lowest
o,
A (%) 42 7 36 in Mass Production; Hybrid is a suitable middle option.
P (%) 20 37 27 Proﬁtab.lhlty mirrors EV; Value-Driven shows the highest
productivity focus.
Customer Satisfaction is the highest in Value-Driven; Mass
CS (%) 55 77 65 ||Production is the lowest, highlighting the importance of customer
centricity.
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Table 4 compares the performance of the three scenarios (Mass Production, Value-Driven, and
Hybrid) based on four key indicators: EV, Profitability (P), Market Acceptance (A), and Customer
Satisfaction (CS). The Value-Driven scenario consistently shows the highest performance across all
metrics (EV: 450, P: 37%, A: 71%, CS: 77%), emphasizing that focusing on value creation and true
market needs increases economic returns, customer satisfaction, and market penetration. The Hybrid
scenario offers a balance between profitability and flexibility, with moderate values (EV: 385, P: 27%,
A: 56%, CS: 65%), making it a practical option for organizations unable to fully transition to the value-
driven model.

Mass Production exhibits the poorest performance (EV: 330, P: 20%, A: 42%, CS: 55%), indicating
the inefficiency of focusing solely on volume in dynamic markets. Quantitatively, the difference
between the value-driven and mass production scenarios ranges from approximately 120 units in EV,
17 percentage points in Profitability, 29 percentage points in Market Acceptance, and 22 percentage
points in Customer Satisfaction, underscoring the strategic importance of a customer-centric, value-
creating strategy.

Table 5) Macro Performance, Innovation, and Return on Investment (ROI)

Mass Value-

Indicator Production Driven Hybrid Summary Analysis
Performance 390 515 465 Highest Macro Performance in Value-Driven; Hybrid
Index offers a balance.
Innovation Product innovation increases with a focus on Value-
55 80 67 .
Index Driven approach.

Highest Return on Investment in Value-Driven

[
ROI (%) 18 35 26 scenario; Mass Production is the lowest.

Table 5 shows the performance of the three scenarios (Mass Production, Value-Driven, and Hybrid)
based on the model’s macro performance index, innovation index, and ROI. The value-driven scenario
yields the highest macro results: Macro Performance Index (515), Innovation Index (80), and ROI
(35%). This confirms that focusing on value creation and customer satisfaction drives product
innovation, resource efficiency, and investment returns. The Hybrid scenario creates a balance among
innovation, profitability, and flexibility with moderate values (Macro Performance: 465, Innovation: 67,
ROI: 26%), suitable for organizations unable to fully adopt the Value-Driven model. Mass production
demonstrates the most limitations in creating economic value and product innovation (Macro
Performance: 390, Innovation: 55, ROI: 18%).

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is about
120 units in the Macro Performance Index, 25 units in the Innovation Index, and 17 percentage points
in ROI, emphasizing the significance of selecting the Value-Driven strategy and intelligent investment.

Table 6) Project Success, Process Stability, and Decision Effectiveness

q Mass Value- . c
Indicator Production || Driven Hybrid Summary of Analysis

Project Success 65 38 76 Value-Driven achieves the highest project success;
Rate (%) Hybrid offers a balance.

Process Stability 71 36 73 Process stability is higher in Value-Driven; Mass
(%) Production shows more fluctuation.

Decision 61 R4 7 Optimal decision-making is best achieved in the
Effectiveness (%) Value-Driven scenario with the intelligent model.




Modeling and Simulation of an Intelligent Technology Commercialization Process Based on Al Algorithms, with a Focus on
Transitioning from Mass Production to Economic Value Creation 10

Table 6 displays the performance of the three scenarios (Mass Production, Value-Driven, and
Hybrid) based on the Project Success Rate, Process Stability Index, and Decision Effectiveness. The
Value-Driven scenario leads: Project Success Rate (88%), Process Stability (86%), and Decision
Effectiveness (84%). This indicates that focusing on value creation and customer satisfaction, coupled
with the use of simulation and Al tools, increases project success probability, operational stability, and
decision accuracy. The Hybrid scenario offers a suitable balance (Success Rate: 76%, Stability: 78%,
Effectiveness: 72%), providing a practical option for organizations that cannot fully transition to the
Value-Driven model while managing risk. Mass Production shows the lowest performance (Success
Rate: 65%, Stability: 71%, Effectiveness: 61%), revealing serious limitations in flexibility, process
consistency, and strategic decision-making.

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is
approximately 23 percentage points in project success, 15 percentage points in process stability, and 23
percentage points in decision effectiveness, clearly demonstrating the importance of a customer-centric
strategy and intelligent modeling.

Table 7) Market Flexibility, Resource Allocation, and Time to Market

q Mass Value- . c
Indicator Production || Driven Hybrid Summary of Analysis
Market 45 73 60 Market flexibility is the highest in Value-Driven;

Flexibility (%) Hybrid offers a suitable average.

Resource 62 20 7 Resource allocation shows the highest efficiency in
Allocation (%) Value-Driven; Mass Production is inefficient.
Time to Market 14 10 12 Fastest entry to market in Value-Driven scenario;

(Months) Mass Production is the slowest.

Table 7 compares Market Flexibility, Optimal Resource Allocation, and Time to Market (TTM)
across the three scenarios. The Value-Driven scenario demonstrates superior performance: Market
Flexibility (78%), Resource Allocation (80%), and TTM (10 months). This indicates that organizations
focused on value creation and customer satisfaction can respond quickly to market changes, utilize
resources optimally, and commercialize technology faster. The Hybrid scenario provides moderate
values Market Flexibility (60%), Resource Allocation (72%), and TTM (12 months), creating a balance
between resource efficiency, flexibility, and speed to market, thereby making it a viable option for
organizations that cannot fully transition. Mass Production performs the lowest: Market Flexibility
(45%), Resource Allocation (62%), and TTM (14 months). These constraints indicate that a sole focus
on volume and cost reduction leads to inflexibility and slowness in capitalizing on market opportunities.

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is about 33
percentage points in market flexibility, 18 percentage points in resource allocation, and 4 months in
TTM, confirming the importance of the Value-Driven model and intelligent tools in optimizing
technology commercialization performance.

Table 8) Overall Commercialization Success Index

Mass Value-

Indicator Production || Driven Hybrid Summary of Analysis
Overall Value-Driven is the most successful scenario
Commercialization 385 540 460 overall; Hybrid offers a balance between

Success Index benefits and limitations.
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Summary of Findings (Tables 4-8):

1. Value-Driven Dominance: The Value-Driven scenario exhibits the highest performance
across all measured metrics, ranging from Economic Value (EV) and Customer
Satisfaction (CS) to Return on Investment (ROI) and Project Success Rates.

2. Mass Production Limitations: The Mass Production scenario is severely constrained,
showing low flexibility, poor stability, and minimal ROI.

3. Hybrid Balance: The Hybrid scenario provides a balanced, average performance, making
it suitable for organizations unable to fully adopt the Value-Driven approach.

4. Model Utility: The model successfully analyzes and predicts all key technology
commercialization variables, facilitating strategic decision-making, resource allocation,
and optimal time-to-market planning.

5. Conceptual Model Validation: The three-layer conceptual model (Input, Processing,
Output) effectively simulated core variables, including EV, Profitability, Market
Acceptance, CS, ROI, Innovation, and Flexibility.

6. Al Optimization: The integration of Al algorithms (GA and RL) and mathematical
formulas successfully optimized resource allocation, TTM scheduling, and outcome
prediction.

7. Strategic Insight: The consistent superior performance of the Value-Driven scenario
confirms the high success rate and effectiveness of a value-centric strategy in technology
commercialization.

8. Model Credibility: The results confirm that the model accurately reconstructs variable
relationships and provides realistic, quantitative validation of the conceptual framework.

Graphical Analysis Synthesis (Heatmap & Box Plot)
e Heatmap of Indicators for 3 Scenarios and 1000 Simulations:

The Heatmap displays the average of all indicators, clearly showing that the Value-Oriented
scenario achieves the highest value across most metrics, while the Mass Production scenario has the
lowest performance. The color coding distinctly illustrates the differences, confirming the conceptual
model analysis and the impact of Al algorithms.

¢ Box Plot of Indicators for 3 Scenarios and 1000 Simulations:

The Box Plot illustrates the distribution and volatility of the indicators. We observe that the Value-
Oriented scenario exhibits the least spread and highest stability, while Mass Production has the greatest
fluctuation, and the Hybrid scenario provides average and balanced results.

Figure 2) Display of the Average of All Indicators

Heatmap of Average Indices for 3 Scenarios (1000 Simulations)
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Figure 3) Display of the Distribution and Volatility of Indicators
Boxplot of All Indices across 3 Scenarios (1000 Simulations)
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The visualizations in Figures 2 and 3 clearly demonstrate that the three-layer conceptual model,
combined with mathematical formulas and the GA and RL algorithms, successfully simulated and
predicted the impact of different scenarios on key technology commercialization indicators. The Value-
Oriented scenario shows the best performance in creating economic value, customer satisfaction,
innovation, and ROI. The Hybrid scenario serves as a balanced option for organizations unable to fully
transition to the Value-Oriented model. The Heatmap and Box Plot not only illustrate average
performance but also the spread and stability of the processes, visually and numerically validating the
conceptual model.

Code in MATLAB and Python Software

The simulation code in MATLAB and Python was developed based on the research methodology
of modeling and simulation.

6) Conclusion and Recommendations

The findings of this research indicate that the technology commercialization process has a complex,
multi-dimensional structure, where success depends on the coordination between product development,
resource allocation, risk management, and market alignment. Traditional models based on mass
production perform adequately in stable markets, while in dynamic and competitive environments, they
lead to reduced economic value, decreased customer satisfaction, and limited organizational flexibility.

Therefore, utilizing hybrid intelligent models, incorporating Dynamic Systems Simulation, Agent-
Based Modeling, and Artificial Intelligence algorithms, such as Genetic Algorithms (GA) and
Reinforcement Learning (RL), is an effective tool for comprehensive analysis and outcome prediction
in variable environments. These models help organizations examine and optimize the relationships
between investment decisions, R&D, market behavior, and consumer response across different
scenarios.

The simulation results of the three main scenarios demonstrated that the Value-Oriented approach
generates the highest levels of economic value and customer satisfaction, offering the greatest flexibility
against changes. Conversely, the Mass Production scenario, despite short-term gains, lacks long-term
economic stability. The Hybrid scenario can serve as an intermediate solution for organizations
transitioning to the Value-Oriented model.
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Overall, the findings suggest that leveraging Al and hybrid modeling significantly enhances
prediction capabilities, optimizes resource allocation, and reduces the risk of failure in technology
projects.

Practical Recommendations:

1. Organizations should focus on Value-Oriented strategies and concentrate R&D investments
on projects offering the highest value-creation returns.

2. Employing simulation models and Al algorithms in managerial decision-making can enhance
the accuracy, speed, and the effectiveness of decisions.

3. Organizations should select the appropriate scenario based on their internal capabilities and
move towards the Value-Oriented model through gradual transition.

4. Developing flexible policies and processes and strengthening collaboration among various
stakeholders (technical teams, marketing, and customers) will pave the way for greater
success in technology commercialization.

Managerial and Industrial Implications:

From a managerial perspective, these results indicate improvements in resource allocation, reduced
project failure risk, and enhanced strategic decision-making in dynamic environments. Industrially,
value-based and data-driven approaches can increase productivity, enhance competitiveness, reduce
unnecessary costs, and create sustainable economic value. Ultimately, this research emphasizes that
shifting from the Mass Production model to the Value-Oriented model, using intelligent tools, is the key
to successful technology commercialization and achieving a sustainable competitive advantage.
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