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1) Introduction 

In today’s world, technology commercialization is a key driver of economic growth and sustainable 

development. Knowledge-based economies increasingly rely on translating laboratory innovations into 

market success. However, commercialization is inherently complex, costly, and risky. Many 

technologies fail due to weaknesses in this process, despite strong scientific potential. This highlights 

the need for modeling and simulating commercialization processes to enable informed decision-making 

before market entry (Zhang et al., 2025). Classical commercialization models (linear, interactive, and 

network models) primarily focus on technology transfer from R&D to market. While helpful for general 

understanding, they lack the flexibility to reflect real-world dynamics and uncertainties (Zhang et al., 

2025). Challenges such as market demand fluctuations, rapid technological changes, and competitive 

pressures have diminished the effectiveness of these traditional models (Callaghan et al., 2025). The rise 

of Industry 4.0 and digitalization offers new opportunities for commercialization, notably through 

Artificial Intelligence (AI). AI can analyze complex data, forecast market behavior, and optimize 

management decisions. AI algorithms, such as neural networks, genetic algorithms, and swarm 

optimization, can reduce risk and improve decision accuracy across various domains (Li et al., 2024). 

Adopting these algorithms can enhance speed, precision, and flexibility in the commercialization 

process (Fuchs et al., 2024; Kemp et al., 2023). A fundamental shift in innovation involves moving from 

mass production to creating economic value. While traditional approaches focused on increasing volume 

and reducing costs, the new economy emphasizes quality, innovation, complementary services, and 

customer experience. This paradigm shift underscores the importance of intelligent commercialization 

modeling, allowing managers and policymakers to analyze the impact of different strategies (Leppänen 

et al., 2023; Ma et al., 2025). Therefore, this research aims to develop an intelligent simulation model 

for technology commercialization. It will model commercialization stages and leverage AI algorithms 

to identify optimal pathways for transitioning from mass production to value creation. The primary goal 

is to demonstrate how the combination of conceptual modeling, agent-based simulation, and AI 

algorithms can act as a decision-making tool for innovation managers and technology policymakers 

(Fachar et al., 2024; Moser et al., 2023). 

Technology commercialization is a complex, multi-stage process aimed at converting knowledge 

and innovation into economic products and services. Traditional linear models execute development, 

production, and marketing stages sequentially, overlooking feedback between them. This leads to 

inefficiency, resource waste, and an inability to respond to market changes (Loske & Klumpp, 2021). 

Consequently, research has shifted toward dynamic and intelligent models that consider interactions 

between stages, economic value assessment, and customer satisfaction (Peng et al., 2022). Network and 

ecosystem approaches have emerged, emphasizing collaboration among universities, industry, and 

government in innovation (Lindgreen et al., 2020). These models improve technology transfer and 

reduce failure risk through cooperation and information flow, but still lack precision in predicting 

outcomes and optimizing resource allocation (Frances et al., 2020). Therefore, the need for intelligent, 

predictive frameworks is greater than ever (McAfee et al., 2017). 

Recent studies identify modeling and simulation as key tools for analyzing complex 

commercialization processes. The two main approaches, System Dynamics (SD) for analyzing feedback 

loops, and Agent-Based Modeling (ABM) for studying agent behavior and network interactions, 

complement each other and enhance strategic decision-making and resource allocation (Hosseini & 

Scraf, 2018). Although this integration requires accurate data and heavy computation, it enables 

organizations to analyze scenarios and forecast market outcomes (Parker et al., 2016). 

Finally, the integration of AI and evolutionary algorithms, such as Genetic Algorithms (GA) and 

Reinforcement Learning (RL), has opened new horizons. These algorithms learn from historical data to 

optimize resource allocation, determine optimal market entry timing, and analyze various scenarios (Lin 

et al., 2025). Combining AI with dynamic and agent-based modeling enhances flexibility, improves 

strategic decisions, and strengthens economic value creation in the commercialization process (Zhang 

et al., 2025). 
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2) Research Background 

The integration of AI and evolutionary algorithms into technology commercialization processes 

enhances prediction accuracy, optimizes resource allocation, and enables organizations to make optimal 

strategic and operational decisions. This leads to sustainable competitive advantage and the creation of 

real economic value (Zhang et al., 2018). 

Table 1( Comparison of Research in Technology Commercialization 

Researcher / 

Year 
Model Used Advantages Limitations 

Key Metrics 

Evaluated 

Parker et al. 

(2016) 

Linear and 

Staged 
Simple and understandable 

Inflexible in complex 

environments 

Investment, time 

to market 

Fonches et al. 

(2020) 

Network and 

Ecosystem 

University-industry-government 

interaction, risk reduction 

Limited scenario 

prediction, no optimal 

resource allocation 

Player 

collaboration, 

innovation 

Loske & 

Klumpp 

(2021) 

SD and 

ABM 

System behavior analysis, complex 

interactions 

Lacks intelligent 

decision-making and 

resource optimization 

Economic value, 

market 

acceptance 

Peng et al. 

(2022) 
SD + GA 

Optimal resource allocation, 

scenario analysis 

Does not fully cover 

customer satisfaction and 

economic value creation 

ROI, NPV, EV 

This Study 
SD + ABM 

+ GA + RL 

Comprehensive scenario analysis, 

resource optimization, intelligent 

decision-making, focus on economic 

value and customer satisfaction 

Limited in real-world 

industrial 

implementation 

EV, NPV, ROI, 

P, A, CS 

 

Table 1 shows that prior research has been limited to linear and ecosystem models, lacking 

integration between System Dynamics (SD), Agent-Based Modeling (ABM), and AI algorithms. The 

proposed model, by combining SD, ABM, GA, and RL, enables accurate simulation of scenarios and 

resource optimization with a focus on economic value creation. 

Research Gaps and Innovation of This Study 

Despite recent advances in modeling and simulating technology commercialization processes, three 

key gaps have been identified in existing studies: 

1. Incomplete Model Integration: Most studies use either SD simulation, Agent-Based 

Modeling (ABM), or AI-based optimization (GA, RL) in isolation. These partial 

approaches cannot simultaneously analyze systemic interactions, individual agent 

behavior, and resource optimization. 

2. Limited Focus on Economic Value and Customer Satisfaction: Many existing models focus 

solely on increasing production volume, reducing costs, or operational efficiency, 

neglecting critical metrics, such as economic value creation, sustainable profitability, and 

customer satisfaction. This limitation leads to suboptimal strategic decisions and hinders 

the transition to a value-driven model (Shi et al., 2016; Seo et al., 2016). 

3. Lack of Strategic Scenario Simulation in High-Uncertainty Environments: Prior research 

often fails to simulate multiple scenarios under high uncertainty, market changes, and 

environmental risks. This deficiency prevents organizations from accurately predicting the 

outcomes of different strategies and making data-driven, well-analyzed management 

decisions (Booranakittipinyo et al., 2024). 
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Table 2) Research Gaps and Innovations of the Present Study 

Research Gap Explanation Innovation of the Present Study 

Incomplete Model 

Integration 

Most studies use SD, ABM, or 

evolutionary algorithms (GA, RL) 

in isolation. 

Three-layer model: SD + ABM + GA + 

RL, enabling simultaneous simulation of 

systemic feedback, agent behavior, and 

resource optimization. 

Limited Focus on 

Economic Value and 

Customer Satisfaction 

Prior models emphasize cost 

reduction and production volume, 

ignoring value creation and 

customer satisfaction. 

Focus on economic value (EV), market 

acceptance (A), profitability (P), and 

customer satisfaction (CS) to support 

sustainable, value-driven decisions. 

Lack of Strategic Scenario 

Simulation in High-

Uncertainty 

Environments 

Inability to simulate multiple 

scenarios under uncertainty, 

market shifts, and environmental 

risks. 

Comprehensive scenario analysis with 

outcome prediction and resource optimization 

in dynamic, uncertain environments. 

Limited Market Behavior 

Analysis 

Complex interactions between 

players and customers are not fully 

simulated. 

ABM for simulating non-linear market 

and customer behavior to capture real-

world dynamics. 

Limited Intelligent 

Decision-Making 

Most models lack adaptive, 

intelligent algorithms. 

Use of Reinforcement Learning (RL) for 

dynamic, optimal decision-making. 

 

Key Innovations of the Present Study 

This research addresses these gaps through a three-layer intelligent model, offering the following 

innovations: 

• Integration of SD, ABM, and AI Algorithms: The proposed model enables simultaneous 

simulation of systemic feedback loops, agent behavior, and resource optimization, enabling 

a comprehensive and realistic analysis of technology commercialization. 

• Focus on Economic Value and Customer Satisfaction: Unlike traditional models, it 

includes key metrics economic value (EV), market acceptance (A), profitability (P), and 

customer satisfaction (CS), enabling organizations to make strategic decisions based on 

sustainable value creation and customer-centric outcomes. 

• Strategic Scenario Simulation in Uncertain Environments: The model can simulate 

multiple operational scenarios in dynamic, unpredictable environments, offering 

sensitivity analysis and risk assessment to identify optimal pathways from mass 

production to economic value creation (Ngu et al., 2023; Tan et al., 2021). 

• Practical Decision-Making Tool: This intelligent framework assists managers and 

policymakers in optimizing resource allocation, market entry timing, and innovation 

strategies, thereby reducing project failure risk. 

3) Conceptual Model of the Research 

The proposed conceptual model for smart technology commercialization is based on a three-layer 

framework designed to optimize the transition from mass production to economic value creation. It 

systematically analyzes the interactions among resources, data, strategic decisions, and outcomes, 

enabling simulation and optimization of the commercialization process. 

The model integrates: 

• System Dynamics (SD): To capture systemic feedback loops and long-term behavior. 

• Agent-Based Modeling (ABM): To simulate non-linear interactions among market agents 

(e.g., firms, customers, regulators). 
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• AI Algorithms (GA + RL): For resource optimization and intelligent, adaptive decision-

making. 

This integrated structure enables comprehensive scenario analysis, risk assessment, and value-

driven strategic planning, supporting organizations to navigate uncertainty and maximize economic 

value and customer satisfaction. 

Figure 1) Conceptual Model of the Research 

 

1. Data and Input Layer 

This layer includes all the data and indicators required to initiate the simulation process: 

• Investment and financial resources indicators: The amount of budget allocated to research, 

development, and marketing. These indicators determine how much resources are 

consumed at different stages of commercialization. 

• R&D and product development data: Includes information on technology, its maturity 

level, commercialization potential, and development time. 

• Market and customer needs data: Includes customer behavior analysis, market size, 

competitors, and future trends, which are critical for predicting product acceptance. 

• Weights of indicators and priorities: Weighting of metrics such as economic value, 

profitability, customer satisfaction, and market acceptance, which are essential for strategic 

decision-making. 

Objective of the data layer: provides accurate and high-quality inputs for simulation and intelligent 

algorithms, ensuring that the outputs reflect real-world market and technological realities. 

2. Processing and Simulation Layer 

This layer is the core of the conceptual model and consists of three main components: 

1. Dynamic Systems Simulation (SD) 

Includes analysis of feedback loops between production, investment, and market acceptance. 

Models the evolution of indicators over time, identifying critical points and long-term system behavior 

patterns. 

 

 

Layer 1: Inputs / Data

1. Investment and 
financial resources

2. R&D and product 
development data

3. Market information and 
customer needs

4.Weights of indicators

Layer 2: Processing and 
Simulation

1. Feedback loop 
simulation or SD

2. Agent and customer 
behavior simulation or 

ABM

3. Resource allocation and 
strategy optimization or 

GA/RL

Layer 3: Outputs / 
Decision-Making

1. Economic Value (EV)

2. Market Acceptance 
(MA)

3. Profitability (P)

4. Customer Satisfaction 
(CS)

Strategic 
Decision-Making 

and Optimal 
Scenario 
Selection
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2. Agent-Based Modeling (ABM) 

Simulates the behavior of different agents: customers, competitors, business partners, and 

regulatory bodies. It models nonlinear interactions and agents’ non-deterministic decisions, predicting 

the impact of different strategies on market acceptance and customer satisfaction. 

3. Artificial Intelligence Algorithms (GA and RL) 

• Genetic Algorithm (GA): Optimizes resource allocation across activities, selects the 

optimal combination of projects, and market entry strategies. 

• Reinforcement Learning (RL): Develops dynamic strategies by learning from 

environmental feedback and predicted simulations. 

Ultimate goal: Maximize economic value, profitability, and customer satisfaction. 

3. Output and Decision-Making Layer 

The model’s outputs include key indicators guiding strategic decision-making: 

• Economic Value (EV): The primary metric reflecting the real value creation of technology 

in the market. 

• Market Acceptance (A): The level of customer adoption of a new product or technology. 

• Profitability (P): Financial performance of technology commercialization, including ROI 

and net profit. 

• Customer Satisfaction (CS): A measure of customer experience and final satisfaction with 

the product or service. 

Outputs are presented as tables, time-series graphs, and scenario analyses, enabling organizations 

to compare different commercialization scenarios, optimize resource allocation, and make strategic 

decisions with minimal risk and maximum economic value. 

4. Research Methodology 

This study is applied and developmental in purpose and model-based, hybrid simulation in method. The 

core rationale for selecting this approach is that technology commercialization is a complex, dynamic, 

and multi-agent phenomenon, involving nonlinear interactions among investors, universities, industries, 

government, and customers. Traditional linear and static methods cannot accurately represent the 

realities of this process. Therefore, approaches that capture both system dynamics and heterogeneous 

agent behavior are essential. 

To this end, the research employs Dynamic Systems Modeling to analyze feedback loops, resource 

flows, and variable changes over time. This enables macro-level analysis of trends, policies, and the 

impact of managerial decisions on key commercialization indicators (e.g., economic value, profitability, 

market acceptance). 

In parallel, Agent-Based Modeling (ABM) is used to simulate the behavior of diverse agents and 

their complex interactions. ABM captures agent heterogeneity, independent decisions, and network 

relationships within the innovation ecosystem. 

The integration of SD and ABM is logical: SD alone is limited in modeling individual interactions 

and agent diversity, while ABM cannot fully capture macro-level system dynamics and feedbacks. 

Combining them enables a comprehensive and accurate model. 

Next, to optimize resource allocation and analyze strategic scenarios under uncertainty, AI 

algorithms, Genetic Algorithm (GA) and Reinforcement Learning (RL), are employed: 

• GA searches the decision space to find the optimal resource mix in the commercialization 

process. 

• RL learns from environmental feedback to identify the best market entry strategies and 

value-creation policies. 
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Finally, the model outputs include key metrics: Economic Value (EV), Market Acceptance (A), 

Profitability (P), and Customer Satisfaction (CS). These are derived through simulations across different 

scenarios (mass production, value-driven, hybrid) and form the basis for research analysis. 

Research Method and Rationale 

This study employs modeling and simulation to analyze the technology commercialization process  

from mass production to economic value creation. The rationale for this approach lies in the complex, 

dynamic, and nonlinear nature of the process, involving interactions among diverse agents (universities, 

industry, government, investors, customers), feedback loops, and environmental uncertainties. 

To address this, the research combines three major tools: 

1. Dynamic Systems Simulation (SD) – Models feedback loops, resource dynamics, and 

system behavior over time. 

2. Agent-Based Modeling (ABM) – Simulates heterogeneous agent behavior in the 

innovation ecosystem and their interactions. 

3. Evolutionary Algorithms (GA) and Reinforcement Learning (RL) – Serve as optimization 

engines for resource allocation, strategic decision-making, and outcome prediction across 

scenarios. 

Therefore, the research logic rests on integrating descriptive models (SD and ABM) with 

optimization models (AI-based) to not only represent real-world system behavior but also identify 

optimal decisions for maximizing economic value and customer satisfaction. The methodology, 

implementation steps, and research findings have been reviewed and refined using AI tools, based on 

proposed recommendations. 

Statistical Population (Research Scope) 

The statistical population in this research comprises technology firms, R&D units, universities, 

incubators, investors, and relevant governmental bodies involved in technology commercialization. This 

selection is justified as technology commercialization is an inherently multi-actor process, where 

interactions among these stakeholders critically determine success or failure. 

The population segments include: 

1. Technology Firms/Startups: Providing data on R&D costs, time-to-market, and sales 

figures. 

2. Universities/Research Centers: Supplying information on knowledge generation, patent 

counts, and technological collaborations. 

3. Venture Capitalists: Offering data on financial metrics and resource allocation strategies. 

4. End Customers: Providing data related to Customer Satisfaction (CS) and technology 

adoption rates. 

Crucially, this population serves as the data source and real-world context that grounds the 

mathematical models (formulas) in practical applicability. Without this population, the formulas would 

remain purely theoretical frameworks. The formulas used in the simulation are presented in Table 3. 

Table 3) Formulas of the Conceptual Model 

Equation Formula Description 

Economic Value 

(EV) 
𝐸𝑉 = 𝑅 − 𝐶 

Net economic value created from 

commercialization (Revenue minus 

Cost). 

Market 

Acceptance (A) 
𝐴 =

Adopters

Total Population
 

Rate of technology adoption within the 

target market. 

Profitability (P) 𝑃 =
(𝑅−𝐶)

𝐶
 

Profitability index or Return on 

Investment (ROI), indicating the 
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Equation Formula Description 

efficiency of the commercialization 

process. 

Customer 

Satisfaction 

(CS) 
𝐶𝑆 =

∑ (
𝑚

𝑖=1
𝑄𝑖 ⋅ 𝑊𝑖)

∑ 𝑊𝑖
𝑚
𝑖=1

 

Weighted satisfaction index based on 

product/service quality (𝑄𝑖) and the 

importance weight (𝑊𝑖) of each criterion. 

Resource 

Allocation (RA) 
 

Optimization of resource allocation 

across 𝑛 projects using Genetic 

Algorithm (GA) or other AI methods. 

RL Reward 

 

Sum of discounted rewards in 

Reinforcement Learning (RL) for 

decision-making under uncertainty. 

GA Fitness 

Function (F) 
𝐹(𝑊) =∑ (

𝑛

𝑖=1
𝑊𝑖 ⋅ 𝑆𝑖) 

Fitness function for optimizing strategic 

index weights (𝑊𝑖), where 𝑆𝑖is the score 

of the 𝑖-th index. 

System 

Dynamic 

Feedback (Δ𝑋)  

Change in stock variables in the SD 

model (Inflows minus Outflows). 

Adoption 

Dynamics (Bass 

Model) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑝

𝑁(𝑡)

𝑀
[𝑀 − 𝑁(𝑡)] + 𝑞

𝑁(𝑡)

𝑀
[𝑀

− 𝑁(𝑡)] 

Bass diffusion model to simulate 

technology adoption over time (𝑝: 

innovation coefficient, 𝑞: imitation 

coefficient, 𝑀: market potential). 

Note: These formulas will all be utilized within the simulation environment. 

5. Research Findings 

The current model possesses several key outputs that evaluate the performance of the technology 

commercialization process. The main outputs include Economic Value (EV), Market Acceptance (A), 

Profitability (P), and Customer Satisfaction (CS), calculated based on three scenarios: Mass Production, 

Value-Driven, and Hybrid. Analytical outputs involve comparing EV across scenarios, sensitivity 

analysis of financial and human resources, and examining the influence of customer satisfaction on 

market acceptance. AI and optimization outputs include the results of GA for finding the optimal fitness 

value, the RL learning path, and the risk index under different scenarios.  

Finally, the integrated and final outputs display the overall model performance in terms of the EV 

and CS combination, compare the three scenarios based on all indicators, and provide a strategic 

decision matrix suggesting the best operational approach. 

Table 4) Comparison of Economic Value, Profitability, Market Acceptance, and Customer 

Satisfaction 

Indicator 
Mass 

Production 

Value-

Driven 
Hybrid Summary of Analysis 

EV 330 450 385 
EV is the highest in Value-Driven; Mass Production is the lowest; 

Hybrid is moderate and stable. 

A (%) 42 71 56 
Market Acceptance is the highest in Value-Driven and the lowest 

in Mass Production; Hybrid is a suitable middle option. 

P (%) 20 37 27 
Profitability mirrors EV; Value-Driven shows the highest 

productivity focus. 

CS (%) 55 77 65 

Customer Satisfaction is the highest in Value-Driven; Mass 

Production is the lowest, highlighting the importance of customer 

centricity. 
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Table 4 compares the performance of the three scenarios (Mass Production, Value-Driven, and 

Hybrid) based on four key indicators: EV, Profitability (P), Market Acceptance (A), and Customer 

Satisfaction (CS). The Value-Driven scenario consistently shows the highest performance across all 

metrics (EV: 450, P: 37%, A: 71%, CS: 77%), emphasizing that focusing on value creation and true 

market needs increases economic returns, customer satisfaction, and market penetration. The Hybrid 

scenario offers a balance between profitability and flexibility, with moderate values (EV: 385, P: 27%, 

A: 56%, CS: 65%), making it a practical option for organizations unable to fully transition to the value-

driven model. 

Mass Production exhibits the poorest performance (EV: 330, P: 20%, A: 42%, CS: 55%), indicating 

the inefficiency of focusing solely on volume in dynamic markets. Quantitatively, the difference 

between the value-driven and mass production scenarios ranges from approximately 120 units in EV, 

17 percentage points in Profitability, 29 percentage points in Market Acceptance, and 22 percentage 

points in Customer Satisfaction, underscoring the strategic importance of a customer-centric, value-

creating strategy. 

Table 5) Macro Performance, Innovation, and Return on Investment (ROI) 

Indicator 
Mass 

Production 

Value-

Driven 
Hybrid Summary Analysis 

Performance 

Index 
390 515 465 

Highest Macro Performance in Value-Driven; Hybrid 

offers a balance. 

Innovation 

Index 
55 80 67 

Product innovation increases with a focus on Value-

Driven approach. 

ROI (%) 18 35 26 
Highest Return on Investment in Value-Driven 

scenario; Mass Production is the lowest. 

 

Table 5 shows the performance of the three scenarios (Mass Production, Value-Driven, and Hybrid) 

based on the model’s macro performance index, innovation index, and ROI. The value-driven scenario 

yields the highest macro results: Macro Performance Index (515), Innovation Index (80), and ROI 

(35%). This confirms that focusing on value creation and customer satisfaction drives product 

innovation, resource efficiency, and investment returns. The Hybrid scenario creates a balance among 

innovation, profitability, and flexibility with moderate values (Macro Performance: 465, Innovation: 67, 

ROI: 26%), suitable for organizations unable to fully adopt the Value-Driven model. Mass production 

demonstrates the most limitations in creating economic value and product innovation (Macro 

Performance: 390, Innovation: 55, ROI: 18%). 

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is about 

120 units in the Macro Performance Index, 25 units in the Innovation Index, and 17 percentage points 

in ROI, emphasizing the significance of selecting the Value-Driven strategy and intelligent investment. 

Table 6) Project Success, Process Stability, and Decision Effectiveness 

Indicator 
Mass 

Production 

Value-

Driven 
Hybrid Summary of Analysis 

Project Success 

Rate (%) 
65 88 76 

Value-Driven achieves the highest project success; 

Hybrid offers a balance. 

Process Stability 

(%) 
71 86 78 

Process stability is higher in Value-Driven; Mass 

Production shows more fluctuation. 

Decision 

Effectiveness (%) 
61 84 72 

Optimal decision-making is best achieved in the 

Value-Driven scenario with the intelligent model. 
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Table 6 displays the performance of the three scenarios (Mass Production, Value-Driven, and 

Hybrid) based on the Project Success Rate, Process Stability Index, and Decision Effectiveness. The 

Value-Driven scenario leads: Project Success Rate (88%), Process Stability (86%), and Decision 

Effectiveness (84%). This indicates that focusing on value creation and customer satisfaction, coupled 

with the use of simulation and AI tools, increases project success probability, operational stability, and 

decision accuracy. The Hybrid scenario offers a suitable balance (Success Rate: 76%, Stability: 78%, 

Effectiveness: 72%), providing a practical option for organizations that cannot fully transition to the 

Value-Driven model while managing risk. Mass Production shows the lowest performance (Success 

Rate: 65%, Stability: 71%, Effectiveness: 61%), revealing serious limitations in flexibility, process 

consistency, and strategic decision-making. 

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is 

approximately 23 percentage points in project success, 15 percentage points in process stability, and 23 

percentage points in decision effectiveness, clearly demonstrating the importance of a customer-centric 

strategy and intelligent modeling. 

Table 7) Market Flexibility, Resource Allocation, and Time to Market 

Indicator 
Mass 

Production 

Value-

Driven 
Hybrid Summary of Analysis 

Market 

Flexibility (%) 
45 78 60 

Market flexibility is the highest in Value-Driven; 

Hybrid offers a suitable average. 

Resource 

Allocation (%) 
62 80 72 

Resource allocation shows the highest efficiency in 

Value-Driven; Mass Production is inefficient. 

Time to Market 

(Months) 
14 10 12 

Fastest entry to market in Value-Driven scenario; 

Mass Production is the slowest. 

 

Table 7 compares Market Flexibility, Optimal Resource Allocation, and Time to Market (TTM) 

across the three scenarios. The Value-Driven scenario demonstrates superior performance: Market 

Flexibility (78%), Resource Allocation (80%), and TTM (10 months). This indicates that organizations 

focused on value creation and customer satisfaction can respond quickly to market changes, utilize 

resources optimally, and commercialize technology faster. The Hybrid scenario provides moderate 

values Market Flexibility (60%), Resource Allocation (72%), and TTM (12 months), creating a balance 

between resource efficiency, flexibility, and speed to market, thereby making it a viable option for 

organizations that cannot fully transition. Mass Production performs the lowest: Market Flexibility 

(45%), Resource Allocation (62%), and TTM (14 months). These constraints indicate that a sole focus 

on volume and cost reduction leads to inflexibility and slowness in capitalizing on market opportunities. 

Quantitatively, the difference between the Value-Driven and Mass Production scenarios is about 33 

percentage points in market flexibility, 18 percentage points in resource allocation, and 4 months in 

TTM, confirming the importance of the Value-Driven model and intelligent tools in optimizing 

technology commercialization performance. 

Table 8) Overall Commercialization Success Index 

Indicator 
Mass 

Production 

Value-

Driven 
Hybrid Summary of Analysis 

Overall 

Commercialization 

Success Index 

385 540 460 

Value-Driven is the most successful scenario 

overall; Hybrid offers a balance between 

benefits and limitations. 
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Summary of Findings (Tables 4-8): 

1. Value-Driven Dominance: The Value-Driven scenario exhibits the highest performance 

across all measured metrics, ranging from Economic Value (EV) and Customer 

Satisfaction (CS) to Return on Investment (ROI) and Project Success Rates. 

2. Mass Production Limitations: The Mass Production scenario is severely constrained, 

showing low flexibility, poor stability, and minimal ROI. 

3. Hybrid Balance: The Hybrid scenario provides a balanced, average performance, making 

it suitable for organizations unable to fully adopt the Value-Driven approach. 

4. Model Utility: The model successfully analyzes and predicts all key technology 

commercialization variables, facilitating strategic decision-making, resource allocation, 

and optimal time-to-market planning. 

5. Conceptual Model Validation: The three-layer conceptual model (Input, Processing, 

Output) effectively simulated core variables, including EV, Profitability, Market 

Acceptance, CS, ROI, Innovation, and Flexibility. 

6. AI Optimization: The integration of AI algorithms (GA and RL) and mathematical 

formulas successfully optimized resource allocation, TTM scheduling, and outcome 

prediction. 

7. Strategic Insight: The consistent superior performance of the Value-Driven scenario 

confirms the high success rate and effectiveness of a value-centric strategy in technology 

commercialization. 

8. Model Credibility: The results confirm that the model accurately reconstructs variable 

relationships and provides realistic, quantitative validation of the conceptual framework. 

Graphical Analysis Synthesis (Heatmap & Box Plot) 

• Heatmap of Indicators for 3 Scenarios and 1000 Simulations: 

The Heatmap displays the average of all indicators, clearly showing that the Value-Oriented 

scenario achieves the highest value across most metrics, while the Mass Production scenario has the 

lowest performance. The color coding distinctly illustrates the differences, confirming the conceptual 

model analysis and the impact of AI algorithms. 

• Box Plot of Indicators for 3 Scenarios and 1000 Simulations: 

The Box Plot illustrates the distribution and volatility of the indicators. We observe that the Value-

Oriented scenario exhibits the least spread and highest stability, while Mass Production has the greatest 

fluctuation, and the Hybrid scenario provides average and balanced results. 

Figure 2) Display of the Average of All Indicators 
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Figure 3) Display of the Distribution and Volatility of Indicators 

 
The visualizations in Figures 2 and 3 clearly demonstrate that the three-layer conceptual model, 

combined with mathematical formulas and the GA and RL algorithms, successfully simulated and 

predicted the impact of different scenarios on key technology commercialization indicators. The Value-

Oriented scenario shows the best performance in creating economic value, customer satisfaction, 

innovation, and ROI. The Hybrid scenario serves as a balanced option for organizations unable to fully 

transition to the Value-Oriented model. The Heatmap and Box Plot not only illustrate average 

performance but also the spread and stability of the processes, visually and numerically validating the 

conceptual model. 

Code in MATLAB and Python Software 

The simulation code in MATLAB and Python was developed based on the research methodology 

of modeling and simulation. 

6) Conclusion and Recommendations 

The findings of this research indicate that the technology commercialization process has a complex, 

multi-dimensional structure, where success depends on the coordination between product development, 

resource allocation, risk management, and market alignment. Traditional models based on mass 

production perform adequately in stable markets, while in dynamic and competitive environments, they 

lead to reduced economic value, decreased customer satisfaction, and limited organizational flexibility. 

Therefore, utilizing hybrid intelligent models,  incorporating Dynamic Systems Simulation, Agent-

Based Modeling, and Artificial Intelligence algorithms, such as Genetic Algorithms (GA) and 

Reinforcement Learning (RL), is an effective tool for comprehensive analysis and outcome prediction 

in variable environments. These models help organizations examine and optimize the relationships 

between investment decisions, R&D, market behavior, and consumer response across different 

scenarios. 

The simulation results of the three main scenarios demonstrated that the Value-Oriented approach 

generates the highest levels of economic value and customer satisfaction, offering the greatest flexibility 

against changes. Conversely, the Mass Production scenario, despite short-term gains, lacks long-term 

economic stability. The Hybrid scenario can serve as an intermediate solution for organizations 

transitioning to the Value-Oriented model. 
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Overall, the findings suggest that leveraging AI and hybrid modeling significantly enhances 

prediction capabilities, optimizes resource allocation, and reduces the risk of failure in technology 

projects. 

Practical Recommendations: 

1. Organizations should focus on Value-Oriented strategies and concentrate R&D investments 

on projects offering the highest value-creation returns. 

2. Employing simulation models and AI algorithms in managerial decision-making can enhance 

the accuracy, speed, and the effectiveness of decisions. 

3. Organizations should select the appropriate scenario based on their internal capabilities and 

move towards the Value-Oriented model through gradual transition. 

4. Developing flexible policies and processes and strengthening collaboration among various 

stakeholders (technical teams, marketing, and customers) will pave the way for greater 

success in technology commercialization. 

Managerial and Industrial Implications: 

From a managerial perspective, these results indicate improvements in resource allocation, reduced 

project failure risk, and enhanced strategic decision-making in dynamic environments. Industrially, 

value-based and data-driven approaches can increase productivity, enhance competitiveness, reduce 

unnecessary costs, and create sustainable economic value. Ultimately, this research emphasizes that 

shifting from the Mass Production model to the Value-Oriented model, using intelligent tools, is the key 

to successful technology commercialization and achieving a sustainable competitive advantage. 
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